Cryptococcus neoformans is an encapsulated yeast-form fungus which causes pulmonary and meningeal infections preferentially in the immunocompromised host. It is thought that cell-mediated immunity is important for acquired resistance against cryptococcosis with activated macrophages as the final effector cells. However, specific polysaccharides in the capsule of C. neoformans protect the fungus from adherence to phagocytes and from subsequent phagocytosis. We have studied extracellular killing of C. neoformans by IFN-gamma-activated macrophages and their products. Murine bone marrow-derived macrophages stimulated with rIFN-gamma for 24 h were able to effectively suppress the growth of C. neoformans and the effect of IFN-gamma was augmented by LPS. Killing of C. neoformans was also achieved by cell-free supernatants from bone marrow-derived macrophages stimulated with IFN-gamma plus LPS. Our results indicate that killing of C. neoformans by activated macrophages is independent from toxic oxygen radicals and mediated by secreted protein(s) of apparent molecular mass of 15 and 30 kDa. These findings indicate that activated macrophages play a major role in host defense, although the fungus resists phagocytosis and remains in the extracellular milieu.

Download full-text PDF

Source

Publication Analysis

Top Keywords

activated macrophages
12
killing neoformans
12
ifn-gamma-activated macrophages
8
extracellular killing
8
cryptococcus neoformans
8
bone marrow-derived
8
marrow-derived macrophages
8
macrophages stimulated
8
macrophages
7
neoformans
7

Similar Publications

Background: Takayasu arteritis (TAK) and giant cell arteritis (GCA), the most common forms of large-vessel vasculitis (LVV), can result in serious morbidity. Understanding the molecular basis of LVV should aid in developing better biomarkers and treatments.

Methods: Plasma proteomic profiling of 184 proteins was performed in two cohorts.

View Article and Find Full Text PDF

Background: Diabetic foot ulcers (DFUs) are a significant contributor to disability and mortality in diabetic patients. Macrophage polarization and functional regulation are promising areas of research and show therapeutic potential in the field of DFU healing. However, the complex mechanism, the difficulty in clinical translation, and the large heterogeneity present significant challenges.

View Article and Find Full Text PDF

Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.

View Article and Find Full Text PDF

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

: Tumor associated macrophages (TAMs) are critical components in regulating the immune statuses of the tumor microenvironments. Although TAM has been intensively studied, it is unclear how mitochondrial proteins such as AGK regulate the TAMs' function. : We investigated the AGK function in TAMs using macrophage-specific deficient mice with B16 and LLC syngeneic tumor models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!