A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tissue distribution and excretion study of neopanaxadiol in rats by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. | LitMetric

Tissue distribution and excretion study of neopanaxadiol in rats by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry.

Biomed Chromatogr

Department of Natural products Chemistry, College of Pharmacy, Jilin University, 1266 Fujin Road, Changchun, 130021, People's Republic of China.

Published: March 2015

Neopanaxadiol (NPD), a major ginsenoside in Panax ginseng C. A. Meyer (Araliaceae), was reported to have neuroprotective effect. In this study, a method of ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC/QTOF-MS) was developed and validated for quantitative analysis of NPD in tissues, urine and feces, using liquid-liquid extraction (LLE) to isolate NPD from different biological samples, and chromatographic separation was performed on an Agilent Zorbax Stable Bond C18 (2.1 × 50 mm, 1.8 µm) column with 0.1% formic acid in water and acetonitrile. All standard calibration curves were linear (all r(2) > 0.995) within the test range. After oral administration, NPD was extensively distributed to most of the tissues without long-term accumulation. The higher levels were observed in stomach and intestine, followed by kidney and liver. Approximately 64.56 ± 20.32% of administered dose in feces and 0.0233 ± 0.0356% in urine were found within 96 h, which indicated that the major elimination route was fecal excretion. This analytical method was applied to the study of NPD distribution and excretion in rats after oral intake for the first time. The results we found here are helpful for us to understand the pharmacological effects of NPD, as well as its toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bmc.3274DOI Listing

Publication Analysis

Top Keywords

distribution excretion
8
ultra-performance liquid
8
liquid chromatography
8
chromatography quadrupole
8
quadrupole time-of-flight
8
time-of-flight mass
8
mass spectrometry
8
npd
6
tissue distribution
4
excretion study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!