A plant bioassay using hydroponically grown Ipomoea aquatica (water spinach) was applied to assess the phytotoxicity of untreated and treated wastewaters from a municipal solid waste incineration bottom ash recycling facility. The 50%-diluted, untreated wastewater exhibited acute toxicity (plants died within 24 hours). Highly diluted doses (3 and 6%) of both wastewater types displayed no significant differences when compared with the control. Treating the wastewater through sequential physical filtration and chemical precipitation processes decreased not only the dissolved solids content but also the pH and salt content. In addition, significant accumulations of Sr, Cr, and Sn were observed in the hydroponically grown I. aquatica plant tissues; in particular, the bioaccumulation of Sr in the leaves and roots was unexpectedly high.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2175/106143013x13807328849738 | DOI Listing |
Trop Anim Health Prod
January 2025
Department of Morphology, Federal University of Santa Maria, Av. Roraima - 1000, Cidade Universitária, Santa Maria, RS, 97105-900, Brazil.
This study was carried out with the objective of evaluating the use of sweet potato vines (SPV) in replacement of alfalfa hay in diets for growing rabbits. For this, data on: performance, composition and color of the meat, digestive enzymes, intestinal morphology and economic viability were analyzed. Fifty New Zealand White rabbits were used, weaned at 35 days with a body weight of ± 585 g, for 49 days.
View Article and Find Full Text PDFSci Rep
January 2025
School of Forestry and Resource Conservation, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106319, Taiwan.
In nature conservation, ex situ and in situ conservation strategies are discussed for protecting endangered species of plants and animals. However, the impacts of these strategies on the microbes associated with these species are rarely considered. In our study, we chose the endophytic fungi of the pantropical creeping plant Ipomoea pes-caprae as representative coastal plant in two natural coastal populations and two botanical gardens in Taiwan as collection sites in order to investigate the potential effect of ex situ plantation on the biodiversity of microbes intimately associated with this plant.
View Article and Find Full Text PDFFood Chem X
January 2025
Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China.
Sweetpotato with different flesh colors exhibits significant differences in flavor. Nevertheless, research on the identification of the key aromatic compounds in sweetpotato is scarce. Therefore, 40 primary sweetpotato varieties with different flesh colors were analyzed by HS-SPME/GC-MS to characterize the volatile compounds.
View Article and Find Full Text PDFPlanta
January 2025
School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
A microRNA with a non-canonical precursor structure harbours an intron in between its miRNA-5p and miRNA-3p relevant for its biogenesis, is conserved across Solanaceae, and targets the mRNA of low phosphate root. Hundreds of miRNAs have been identified in plants and great advances have been accomplished in the understanding of plant miRNA biogenesis, mechanisms and functions. Still, many miRNAs, particularly those with less conventional features, remain to be discovered.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Ministry of Agriculture, Xuzhou 221131, China.
: Sweetpotato black rot, caused by , is a severe fungal disease in sweetpotato production. Biological control strategies represent a promising, environmentally sustainable approach to managing this disease. This study investigates the biocontrol potential of SFB-1 against .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!