Our previous study indicated that shear waves decay and propagate at a lower speed as they propagate into a tissue volume mechanically fractionated by histotripsy. In this paper, we hypothesize that the change in the shear dynamics is related to the degree of tissue fractionation, and can be used to predict histotripsy treatment outcomes. To test this hypothesis, lesions with different degrees of tissue fractionation were created in agar-graphite tissue phantoms and ex vivo kidneys with increasing numbers of therapy pulses, from 0 to 2000 pulses per treatment location. The therapy pulses were 3-cycle 750-kHz focused ultrasound delivered at a peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. The shear waves were excited by acoustic radiation force impulse (ARFI) focused at the center of the lesion. The spatial and temporal behavior of the propagating shear waves was measured with ultrasound plane wave imaging. The temporal displacement profile at a lateral location 10 mm offset to the shear excitation region was detected with M-mode imaging. The decay and delay of the shear waves were quantitatively characterized on the temporal displacement profile. Results showed significant changes in two characteristics on the temporal displacement profile: the peak-to-peak displacement decayed exponentially with increasing numbers of therapy pulses; the relative time-to-peak displacement increased with increasing numbers of therapy pulses, and appeared to saturate at higher numbers of pulses. Correspondingly, the degree of tissues fractionation, as indicated by the percentage of structurally intact cell nuclei, decreased exponentially with increasing numbers of therapy pulses. Strong linear correlations were found between the two characteristics and the degree of tissue fractionation. These results suggest that the characteristics of the shear temporal displacement profile may provide useful feedback information regarding the treatment outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2014.3013DOI Listing

Publication Analysis

Top Keywords

shear waves
20
therapy pulses
20
increasing numbers
16
numbers therapy
16
temporal displacement
16
displacement profile
16
tissue fractionation
12
acoustic radiation
8
radiation force
8
force impulse
8

Similar Publications

Purpose: Shear wave elastography (SWE) provides a means for adding information about the mechanical properties of tissues to a diagnostic ultrasound examination. It is important to understand the physics and methods by which the measurements are made to aid interpretation of the results as they relate to disease processes.

Methods: The components of how ultrasound is used to generate shear waves and make measurements of the induced motion are reviewed.

View Article and Find Full Text PDF

Shear Wave Elastography (SWE) is an imaging technique that detects shear waves generated by tissue excited by Acoustic Radiation Force (ARF), and characterizes the mechanical properties of soft tissue by analyzing the propagation velocity of shear wave. ARF induces a change in energy density through the nonlinear propagation of ultrasound waves, which drives the tissue to generate shear waves. However, the amplitude of shear waves generated by ARF is weak, and the shear waves are strongly attenuated in vivo.

View Article and Find Full Text PDF

The eastern equatorial Atlantic hosts a productive marine ecosystem that depends on upward supply of nitrate, the primary limiting nutrient in this region. The annual productivity peak, indicated by elevated surface chlorophyll levels, occurs in the Northern Hemisphere summer, roughly coinciding with strengthened easterly winds. For enhanced productivity in the equatorial Atlantic, nitrate-rich water must rise into the turbulent layer above the Equatorial Undercurrent.

View Article and Find Full Text PDF

Underwater sound propagation over a layered seabed with weak shear rigiditya).

J Acoust Soc Am

January 2025

Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943-5216, USA.

The shear wave speed is often small compared to the compressional wave speed in the top part of the seabed, where acoustic normal modes penetrate. In sediments with weak but finite shear rigidity, the strongest conversion from compressional to shear waves occurs at interfaces within the sediment. Shear wave generation at such interfaces and interference within sediment layers lead to first-order perturbations in the normal mode phase speed and contributions to sound attenuation, which vary rapidly with frequency.

View Article and Find Full Text PDF

Objective: Although FibroScan (FS), based on Vibration-Controlled Transient Elastography (VCTE), is a widely used non-invasive device for assessing liver fibrosis and steatosis, its current standard-VCTE examination remains timely and difficult on patients with obesity. The Guided-VCTE examination uses continuous shear waves to locate the liver by providing a real-time predictive indicator for shear wave propagation and uses shear wave maps averaging to increase the signal-to-noise ratio in difficult to assess patients. We aimed to evaluate the effectiveness of the new indicator, as well as compare examination times and success rates with both standard-VCTE and Guided-VCTE examinations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!