Lewis acid catalyzed cascade reaction to carbazoles and naphthalenes via dehydrative [3 + 3]-annulation.

Org Lett

The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China.

Published: July 2014

A novel Lewis acid catalyzed dehydrative [3 + 3]-annulation of readily available benzylic alcohols and propargylic alcohols was developed to give polysubstituted carbazoles and naphthalenes in moderate to good yields with water as the only byproduct. The reaction was presumed to proceed via a cascade process involving Friedel-Crafts-type allenylation, 1,5-hydride shift, 6π-eletrocyclization, and Wagner-Meerwein rearrangement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol501605hDOI Listing

Publication Analysis

Top Keywords

lewis acid
8
acid catalyzed
8
carbazoles naphthalenes
8
dehydrative 3]-annulation
8
catalyzed cascade
4
cascade reaction
4
reaction carbazoles
4
naphthalenes dehydrative
4
3]-annulation novel
4
novel lewis
4

Similar Publications

The endoperoxide scaffold is found in numerous natural products and synthetic substances of pharmaceutical interest. The main challenge to their synthetic access remains the preparation of chiral compounds due to the weakness of the peroxide bond, which limits the scope of available or applicable methods. Here, we demonstrate how peroxycarbenium species can be trapped by silylated nucleophiles with high enantioselectivities and diastereoselectivities when applicable, using a chiral imidophosphorimidate (IDPi) as a catalyst.

View Article and Find Full Text PDF

The carbon dioxide (CO) capture and utilization strategy has emerged as an innovative and multifaceted approach to counteract carbon emissions. In this study, a highly porous muffin polyhedral barium (Ba) ̵ organic framework (BaTATB; HTATB = 4,4',4″--triazine-2,4,6-triyl-tribenzoic acid) was synthesized solvothermally. The three-dimensional honeycomb pore architectures were densely populated with Lewis acidic Ba(II) metal sites and basic nitrogen-rich triazines.

View Article and Find Full Text PDF

Acridine/Lewis Acid Complexes as Powerful Photocatalysts: A Combined Experimental and Mechanistic Study.

ACS Catal

October 2024

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.

A class of generated Lewis acid (LA) activated acridine complexes is reported, which act as potent photochemical catalysts for the oxidation of a variety of protected secondary amines. Acridine/LA complexes exhibit tunable excited state reduction potentials ranging from +2.07 to 2.

View Article and Find Full Text PDF

Zinc benzoates may provide an element of tunability that is not available to their ubiquitous acetate analogues. Unfortunately, the synthesis, speciation, and coordination chemistry of zinc benzoates are less developed than the acetates. In this study, we systematically investigate zinc benzoates to understand their propensity to favor solvate (Zn(OCAr)(L)) or cluster (ZnO(OCAr)) formation as well as their utility as metal complex precursors.

View Article and Find Full Text PDF

Combining experiment and theory, the mechanisms of H2 activation by the potassium-bridged aluminyl dimer K2[Al(NON)]2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tertbutyl-9,9-dimethylxanthene) and its monomeric K+-sequestered counterpart have been investigated. These systems show diverging reactivity towards the activation of dihydrogen, with the dimeric species undergoing formal oxidative addition of H2 at each Al centre under ambient conditions, and the monomer proving to be inert to dihydrogen addition. Noting that this K+ dependence is inconsistent with classical models of single-centre reactivity for carbene-like Al(I) species, we rationalize these observations instead by a cooperative frustrated Lewis pair (FLP)-type mechanism (for the dimer) in which the aluminium centre acts as the Lewis base and the K+ centres as Lewis acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!