Pyridyl-substituted 1,3,5-triazines were synthesized in good to excellent yields via an unprecedented one-step cyclocondensation of 4H-pyrido[1,3]oxazin-4-ones with amidines at room temperature or under microwave irradiations. The broad applicability was demonstrated by 33 examples with a variety of amidines and three different 4H-pyrido[1,3]oxazin-4-one chemical series. In addition, a one-pot process from 4H-pyrido[1,3]oxazin-4-one precursors (imide sodium salts) was developed and led to the desired triazines compounds, thus allowing a one-step economy in their global synthetic preparation. This approach provides rapid access to pyridyl (or pyridone)-substituted 1,3,5-triazines with high potential in various fields of application.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo5010668DOI Listing

Publication Analysis

Top Keywords

pyridyl-substituted 135-triazines
8
access pyridyl-substituted
4
135-triazines 4h-pyrido[13]oxazin-4-ones
4
4h-pyrido[13]oxazin-4-ones cyclocondensation
4
cyclocondensation process
4
process pyridyl-substituted
4
135-triazines synthesized
4
synthesized good
4
good excellent
4
excellent yields
4

Similar Publications

Despite recent advances in cancer treatment, there is still a need for novel compounds with antineoplastic activity. Among 11 biphenyl-based organogold(III) -heterocyclic carbene (NHC) (BGC) complexes of general formula [(C^C)Au(NHC-pyr)X], where (C^C) = 4,4'-ditertbutylbiphenyl, X = Cl or phenylacetylide, and (NHC-pyr) is a pyridyl-substituted NHC ligand, the complex bearing a 4-CF-pyridyl substituent and a chloride ligand showed promising antineoplastic activity on the triple negative breast cancer cell line. was able to induce cell apoptosis but had no effect on the cell cycle.

View Article and Find Full Text PDF

A new approach is introduced to control the metal-centred configuration of stereogenic-at-iron catalysts by utilizing axial ligand chirality, which becomes locked upon metal coordination. This strategy is applied to an iron catalyst containing two chelating -(2-pyridyl)-substituted triazol-5-ylidene mesoionic carbenes (MICs) resulting in a helical topology with a stereogenic iron centre.

View Article and Find Full Text PDF

Spatially Isomeric Fulleropyrrolidines Enable Controlled Stacking of Perovskite Colloids for High-Performance Tin-Based Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China.

The advancement of tin-based perovskite solar cells (TPSCs) has been severely hindered by the poor controllability of perovskite crystal growth and the energy level mismatch between the perovskite and fullerene-based electron transport layer (ETL). Here, we synthesized three cis-configured pyridyl-substituted fulleropyrrolidines (PPF), specifically 2-pyridyl (PPF2), 3-pyridyl (PPF3), and 4-pyridyl (PPF4), and utilized them as precursor additives to regulate the crystallization kinetics during film formation. The spatial distance between the two pyridine groups in PPF2, PPF3, and PPF4 increases sequentially, enabling PPF4 to interact with more perovskite colloidal particles.

View Article and Find Full Text PDF

Structural isomerism engineering regulates molecular AIE behavior and application in visualizing endogenous hydrogen sulfide.

J Mater Chem B

November 2024

Department of Chemical and Materials Engineering, Photo-sensitive Material Advanced Research and Technology Center (Photo-SMART), National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.

Hydrogen sulfide (HS) is a critical bioregulator implicated in numerous physiological and pathological processes, including cancer and neurodegenerative diseases. Compared with traditional instrument analysis, fluorescence detection technology based on small molecules in real-time and sensing HS has attracted attention. In this investigation, we developed a system of coumarin-based fluorophores linked with aminopyridine a dipolar imino-double bond.

View Article and Find Full Text PDF

A Visible-Light-Responsive Fluorescent Diarylethene Having a Betaine Structure.

Chemistry

December 2024

Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.

As a new molecular scaffold of photoswitchable fluorophore, we developed a photochromic diarylethene containing a betaine structure based on pyridinium N-enolate. A facile reaction of a pyridyl-substituted dithienylperfluorocyclopentene derivative with octafluorocyclopentene constructed the betaine structure. The introduction of the betaine moiety provided the diarylethene molecule with bathochromically shifted optical absorption and fluorescing ability, thus enabling the molecule to function as a visible-light-responsive turn-off mode photoswitchable fluorophore.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!