Nitric oxide (NO) is involved in angiogenesis and stimulates the EGF-R signaling pathway. Stimulation of different endothelial cell lines with bradykinin (BK) activates the endothelial NO synthase (eNOS) and promotes EGF-R tyrosine phosphorylation. Increase in NO production correlated with enhanced phosphorylation of tyrosine residues and S-nitrosylation of the EGF-R. NO-mediated stimulatory effects on tyrosine phosphorylation of the EGF-R, where cGMP independent. Inhibition of soluble guanylyl cyclase followed by BK stimulation of human umbilical vein endothelial cells (HUVECs) did not change tyrosine phosphorylation levels of EGF-R. BK-stimulation of HUVEC promoted S-nitrosylation of the phosphatase SHP-1 and of p21Ras. Phosphorylation and activation of the ERK1/2 MAP kinases mediated by BK was dependent on the activation of the B2 receptor, of the EGF-R, and of p21 Ras. Inhibition of BK-stimulated S-nitrosylation prevented the activation of the ERK1/2 MAP kinases. Furthermore, activated ERK1/2 MAP kinases inhibited internalization of EGF-R by phosphorylating specific Thr residues of its cytoplasmic domain. BK-induced proliferation of endothelial cells was partially inhibited by the NOS inhibitor (L-NAME) and by the MEK inhibitor (PD98059). BK stimulated the expression of vascular endothelial growth factor (VEGF). VEGF expression was dependent on the activation of the EGF-R, the B2 receptor, p21Ras, and on NO generation. A Matrigel®-based in vitro assay for angiogenesis showed that BK induced the formation of capillary-like structures in HUVEC, but not in those cells expressing a mutant of the EGF-R lacking tyrosine kinase activity. Additionally, pre-treatment of BK-stimulated HUVEC with L-NAME, PD98059, and with SU5416, a specific inhibitor of VEGFR resulted in inhibition of in vitro angiogenesis. Our findings indicate that BK-mediated angiogenesis in endothelial cells involves the induction of the expression of VEGF associated with the activation of the NO/EGF-R/p21Ras/ERK1/2 MAP kinases signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2014.06.011 | DOI Listing |
Mar Drugs
November 2024
Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea.
, a salt-tolerant plant, has demonstrated antioxidant effects, the ability to prevent prostate enlargement, antifungal properties, and skin moisturizing benefits. This study aimed to explore the anti-melanogenic potential of the 70% ethanol extract of (TME) along with its ethyl acetate (TME-EA) and water (TME-A) fractions. TME (10-200 µg/mL), TME-EA (1-15 µg/mL), and TME-A (100-1000 µg/mL) were prepared and applied to B16F10 cells with or without α-MSH for 72 h.
View Article and Find Full Text PDFArch Insect Biochem Physiol
December 2024
Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Changchun, PR China.
The plant defense against insects is multiple layers of interactions. They defend through direct defense and indirect defense. Direct defenses include both physical and chemical barriers that hinder insect growth, development, and reproduction.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
December 2024
Department of Respiratory Medicine, The Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
Purpose: This study aims to investigate the biological roles and molecular mechanisms of Cathepsin G (CTSG) in the progression of non-small cell lung cancer (NSCLC).
Methods: Western blotting and immunohistochemistry analyses of clinical samples were performed to determine the expression levels of CTSG in patients with NSCLC. Bioinformatic analysis of clinical datasets was conducted to evaluate the correlation between CTSG and lymph node metastasis, tumor stage, and immune cell infiltration.
Biotechnol Notes
November 2024
Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206.
CNS Neurosci Ther
December 2024
The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China.
Objective: The study investigates whether the expression and function of ENT1 can be regulated by inhibiting the JNK signaling pathway, thereby altering the levels of extracellular adenosine and glutamate in neurons, and subsequently affecting the progression of epilepsy.
Methods: The adult male SD rats were randomly divided into four groups: EP + SP600125 group, EP + DMSO group, EP group, and normal control group. The expression levels of ENT1, p-JNK, and JNK in the hippocampus of rats from each experimental group were detected using Western blotting technology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!