Mosquitoes are important disease vectors that transmit a wide variety of pathogens to humans, including those that cause malaria and dengue fever. Insecticides have traditionally been deployed to control populations of disease-causing mosquitoes, but the emergence of insecticide resistance has severely limited the number of active compounds that are used against mosquitoes. Thus, to improve the control of resistant mosquitoes there is a need to identify new insecticide targets and active compounds for insecticide development. Recently we demonstrated that inward rectifier potassium (Kir) channels and small molecule inhibitors of Kir channels offer promising new molecular targets and active compounds, respectively, for insecticide development. Here we provide pharmacological validation of a specific mosquito Kir channel (AeKir1) in the yellow fever mosquito Aedes aegypti. We show that VU590, a small-molecule inhibitor of mammalian Kir1.1 and Kir7.1 channels, potently inhibits AeKir1 but not another mosquito Kir channel (AeKir2B) in vitro. Moreover, we show that a previously identified inhibitor of AeKir1 (VU573) elicits an unexpected agonistic effect on AeKir2B in vitro. Injection of VU590 into the hemolymph of adult female mosquitoes significantly inhibits their capacity to excrete urine and kills them within 24 h, suggesting a mechanism of action on the excretory system. Importantly, a structurally-related VU590 analog (VU608), which weakly blocks AeKir1 in vitro, has no significant effects on their excretory capacity and does not kill mosquitoes. These observations suggest that the toxic effects of VU590 are associated with its inhibition of AeKir1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4069099 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100700 | PLOS |
Cells
January 2025
Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.
J Membr Biol
January 2025
Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India.
Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.
View Article and Find Full Text PDFEur J Pharmacol
February 2025
The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China. Electronic address:
The peptide toxin SsTx-4 derived from venom of centipede Scolopendra subspinipes mutilans was characterized as a potent antagonist of the inwardly rectifying potassium (Kir) channel subtypes Kir1.1, Kir4.1, and Kir6.
View Article and Find Full Text PDFInsects
November 2024
Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
Flonicamid is a selective insecticide effective against piercing-sucking insects. Although its molecular target has been identified in other species, the specific effects and detailed mechanism of action in Kuwayama remain poorly understood. In this study, we determined that the LC of flonicamid for adults was 16.
View Article and Find Full Text PDFInt J Hypertens
November 2024
Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de Los Tenorios 235, Col. Granjas-Coapa, Alc. Tlalpan, C.P. 14330, Ciudad de México, Mexico.
Elevated blood pressure is the leading metabolic risk factor in attributable deaths, and hydrogen sulfide (HS) regulates vascular tone and blood pressure. Thus, this study aims to evaluate the mechanism by which NaHS (HS donor) produces inhibition of the vasopressor sympathetic outflow in obese rats. For that purpose, animals were fed a high-fat diet (HFD) (60% calories from fat) for 12 weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!