Aquaglyceroporin 9 (AQP9) is considered to be involved in numerous types of carcinogenic processes, particularly in liver carcinoma. AQP9 expression is significantly decreased in the human hepatocellular carcinoma when compared with the non-tumourigenic liver, which leads to increased resistance to apoptosis. In addition, AQP9 is permeable to glycerol and urea. The involvement of AQP9 in leukemia has not been fully delineated. It is proposed that abnormal proliferation of hematopoietic stem cells (HSCs) contributes to leukemia carcinogenesis. Therefore, the present study aimed to investigate the possible roles of AQP9 in HSCs and its effect on the intracellular glycerol content. HSCs and non-HSCs (nHSCs) were isolated via magnetic-activated cell sorting and then subjected to flow cytometry for evaluation of purity. White blood cells (WBCs) were isolated from peripheral blood from healthy volunteers. Furthermore, AQP9 expression was examined at the mRNA and protein levels using western blotting and reverse transcription-polymerase chain reaction (RT-PCR). The glycerol content of HSCs, nHSCs and WBCs was evaluated by ELISA. Finally, in order to observe the morphology of HSCs and nHSCs, a blood smear was conducted and the cells were observed with Wright-Giemsa staining. The results indicated that the glycerol content in the HSCs was markedly greater than that in the nHSCs. AQP9 mRNA and protein expression was not detected in the HSCs and nHSCs, but was identified in the WBCs. Moreover, the HSC morphological characteristics included round or oval cells with round, slightly oval or irregularly shaped nuclei. Additionally, the nuclei occupied almost the entire cell, were located in the middle or were biased toward one side, and were stained light purple or red. Overall, our results indicated that intracellular glycerol is involved in HSC proliferation, despite the fact that glycerol is not mediated by AQP9. Hence, our findings may be useful in further understanding the mechanism of leukemia carcinogenesis, and these data may be valuable in developing future therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063588 | PMC |
http://dx.doi.org/10.3892/ol.2014.2142 | DOI Listing |
J Phys Chem B
January 2025
INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, CBRS, 2 Rue du Prof. Descottes, F-87000 Limoges, France.
Dry skin is a common condition that is experienced by many. Besides being particularly present during the cold season, various diseases exist all year round, leading to localized xerosis. To prevent it, the skin is provided with natural moisturizing factors (NMFs).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Engineering, Akdeniz University, 07058 Antalya, Turkey. Electronic address:
This study aimed to enhance inulinase production from agricultural biomass pretreated with deep eutectic solvents (DES) using Aspergillus niger A42 (ATCC 204447). Barley husk (BH), wheat bran (WB), and oat husk (OH) were selected as substrates and were pretreated using different molar ratios of choline chloride: glycerol (ChCl: Gly) and choline chloride: acetic acid (ChCl: AA). DES pretreatment was followed by dilute sulfuric acid hydrolysis.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China. Electronic address:
Protein fibrillation has great potential for enhancing the emulsification, foaming, and gelling properties of proteins. However, its effects on protein film-forming properties are less well understood. In this study, soy protein isolate (SPI) was subjected to fibrillation at pH 2.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
A series of polyurethanes (PU-GT) were prepared using polyglycolide-block-polytetrahydrofuran-block-polyglycolide (PGA-PTHF-PGA), polytetrahydrofuran homopolymer (PTHF), glycerol, and hexamethylene diisocyanate (HDI) by a one-pot synthesis method. The non-isothermal crystallization and subsequent heating curves showed that the PTHF component in these polyurethanes could crystallize in a temperature range of -11.5~2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!