Endoplasmic reticulum stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) protects against pressure overload-induced heart failure and lung remodeling.

Hypertension

From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.).

Published: October 2014

Studies have reported that development of congestive heart failure is associated with increased endoplasmic reticulum stress. Double stranded RNA-activated protein kinase R-like endoplasmic reticulum kinase (PERK) is a major transducer of the endoplasmic reticulum stress response and directly phosphorylates eukaryotic initiation factor 2α, resulting in translational attenuation. However, the physiological effect of PERK on congestive heart failure development is unknown. To study the effect of PERK on ventricular structure and function, we generated inducible cardiac-specific PERK knockout mice. Under unstressed conditions, cardiac PERK knockout had no effect on left ventricular mass, or its ratio to body weight, cardiomyocyte size, fibrosis, or left ventricular function. However, in response to chronic transverse aortic constriction, PERK knockout mice exhibited decreased ejection fraction, increased left ventricular fibrosis, enhanced cardiomyocyte apoptosis, and exacerbated lung remodeling in comparison with wild-type mice. PERK knockout also dramatically attenuated cardiac sarcoplasmic reticulum Ca(2+)-ATPase expression in response to aortic constriction. Our findings suggest that PERK is required to protect the heart from pressure overload-induced congestive heart failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4162806PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.114.03811DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
20
heart failure
16
perk knockout
16
reticulum stress
12
congestive heart
12
left ventricular
12
perk
9
protein kinase
8
kinase r-like
8
r-like endoplasmic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!