A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electroformation of Giant Vesicles on Indium Tin Oxide (ITO)-Coated Poly(ethylene terephthalate) (PET) Electrodes. | LitMetric

Electroformation of Giant Vesicles on Indium Tin Oxide (ITO)-Coated Poly(ethylene terephthalate) (PET) Electrodes.

Membranes (Basel)

Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.

Published: May 2011

Electroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs) from egg yolk phosphatidylcholine was examined using a poly(ethylene terephthalate) sheet coated with indium tin oxide (ITO-PET) as the electrode material. With sinusoidal ac voltage, GV formation occurred in a similar manner to that on an ITO-glass electrode widely used in electroformation. Difference in the specific electrical resistance of ITO-PET did not significantly affect electroformation. The present results indicate that ITO-PET may be used as more flexible and less expensive electrode material in electroformation. In order to obtain insights into electroformation, other electric voltage forms, static dc and dc pulses, were also tested in place of commonly used sinusoidal ac. Under the present conditions, the best GV formation was observed with dc pulses of negative polarity. The result with static dc demonstrated that the mechanical vibration of swelling lipid seen with sinusoidal ac voltage was not essential for GV formation. On the positive electrode, the electroswelling of lipid mainly yielded non-spherical membranous objects. Pre-application of positive dc voltage on lipid hindered GV formation in electroswelling of the lipid with ac.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021930PMC
http://dx.doi.org/10.3390/membranes1020109DOI Listing

Publication Analysis

Top Keywords

giant vesicles
8
indium tin
8
tin oxide
8
polyethylene terephthalate
8
electrode material
8
sinusoidal voltage
8
electroswelling lipid
8
electroformation
6
lipid
5
electroformation giant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!