The growing use of computer systems in medical institutions has been generating a tremendous quantity of data. While these data have a critical role in assisting physicians in the clinical practice, the information that can be extracted goes far beyond this utilization. This article proposes a platform capable of assembling multiple data sources within a medical imaging laboratory, through a network of intelligent sensors. The proposed integration framework follows a SOA hybrid architecture based on an information sensor network, capable of collecting information from several sources in medical imaging laboratories. Currently, the system supports three types of sensors: DICOM repository meta-data, network workflows and examination reports. Each sensor is responsible for converting unstructured information from data sources into a common format that will then be semantically indexed in the framework engine. The platform was deployed in the Cardiology department of a central hospital, allowing identification of processes' characteristics and users' behaviours that were unknown before the utilization of this solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10916-014-0063-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!