Lipidomics of glycosphingolipids.

Metabolites

Life and Medical Sciences Institute (LiMES), Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk Str. 1, D-53121 Bonn, Germany.

Published: February 2012

Glycosphingolipids (GSLs) contain one or more sugars that are attached to a sphingolipid moiety, usually to a ceramide, but in rare cases also to a sphingoid base. A large structural heterogeneity results from differences in number, identity, linkage, and anomeric configuration of the carbohydrate residues, and also from structural differences within the hydrophobic part. GSLs form complex cell-type specific patterns, which change with the species, the cellular differentiation state, viral transformation, ontogenesis, and oncogenesis. Although GSL structures can be assigned to only a few series with a common carbohydrate core, their structural variety and the complex pattern are challenges for their elucidation and quantification by mass spectrometric techniques. We present a general overview of the application of lipidomics for GSL determination. This includes analytical procedures and instrumentation together with recent correlations of GSL molecular species with human diseases. Difficulties such as the structural complexity and the lack of standard substances for complex GSLs are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901200PMC
http://dx.doi.org/10.3390/metabo2010134DOI Listing

Publication Analysis

Top Keywords

lipidomics glycosphingolipids
4
glycosphingolipids glycosphingolipids
4
glycosphingolipids gsls
4
gsls sugars
4
sugars attached
4
attached sphingolipid
4
sphingolipid moiety
4
moiety ceramide
4
ceramide rare
4
rare cases
4

Similar Publications

Sphingolipid profiling as a biomarker of type 2 diabetes risk: evidence from the MIDUS and PREDIMED studies.

Cardiovasc Diabetol

December 2024

Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica of Chile, Diagonal Paraguay #362, Santiago, Chile.

Background: Type 2 diabetes (T2D) has become a worldwide pandemic. While ceramides may serve as intermediary between obesity-related lipotoxicity and T2D, the relationship with simple glycosphingolipids remains uncertain. The aim of this study was to characterize the associations between blood glycosphingolipid and ceramide species with T2D and to identify a circulating sphingolipid profile that could serve as novel biomarker for T2D risk.

View Article and Find Full Text PDF

Lipidomics of Caco-2 Cells Under Simulated Microgravity Conditions.

Int J Mol Sci

November 2024

Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Italy.

Microgravity may profoundly impact the cardiovascular system, skeletal muscle system, and immune system of astronauts. At the cellular level, microgravity may also affect cell proliferation, differentiation, and growth, as well as lipid metabolism. In this work, we investigated lipid changes in Caco-2 cells cultured in a clinostat for 24 h under simulated microgravity conditions (SMC).

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDAC) is challenging to detect early, as current biomarkers like carbohydrate antigen 19-9 are not sufficient for reliable diagnosis.
  • A study analyzed serum samples from 88 subjects, including PDAC patients and controls, using advanced multi-omics methods to identify molecular changes associated with PDAC.
  • The research found 505 altered proteins, 186 metabolites, and 33 lipids; notably, it developed a machine learning model resulting in a 38 biomarker signature that could improve early detection of PDAC.
View Article and Find Full Text PDF

SPTLC3, an inducible subunit of the serine palmitoyltransferase (SPT) complex, causes production of alternative sphingoid bases, including a 16-carbon dihydrosphingosine, whose biological function is only beginning to emerge. High-fat feeding induced SPTLC3 in the liver, prompting us to produce a liver-specific knockout mouse line. Following high-fat feeding, knockout mice showed decreased fasting blood glucose, and knockout primary hepatocytes showed suppressed glucose production, a core function of hepatocytes.

View Article and Find Full Text PDF

The good, the bad, and the unknown nature of decreased GD3 synthase expression.

Front Mol Neurosci

November 2024

Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.

This paper explores the physiological consequences of decreased expression of GD3 synthase (GD3S), a biosynthetic enzyme that catalyzes the synthesis of b-series gangliosides. GD3S is a key factor in tumorigenesis, with overexpression enhancing tumor growth, proliferation, and metastasis in various cancers. Hence, inhibiting GD3S activity has potential therapeutic effects due to its role in malignancy-associated pathways across different cancer types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!