While the diffusion of hydrogen on silicon surfaces has been relatively well characterized, both experimentally and theoretically, diffusion around corners between surfaces, as will be found on nanowires and nanostructures, has not been studied. Motivated by nanostructure fabrication by Patterned Atomic Layer Epitaxy, we present a density functional theory study of the diffusion of hydrogen around the edge formed by the orthogonal (0 0 1) and (1 1 0) surfaces in silicon. We find that the barrier from (0 0 1) to (1 1 0) is approximately 0.3 eV lower than from (1 1 0) to (0 0 1), and that it is comparable to diffusion between rows on a clean surface, with no significant effect on the hydrogen patterns at the growth temperatures used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0953-8984/26/29/295301 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!