In vitro establishment of ivermectin-resistant Rhipicephalus microplus cell line and the contribution of ABC transporters on the resistance mechanism.

Vet Parasitol

Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil.

Published: August 2014

AI Article Synopsis

  • The cattle tick Rhipicephalus microplus is a major livestock parasite with increasing resistance to acaricides, complicating control efforts.
  • The study established an ivermectin-resistant cell line, BME26-IVM, which showed a 4.5 times greater resistance to ivermectin after 46 weeks of exposure to gradually increasing doses.
  • Research into the molecular mechanisms of resistance revealed that ATP-binding cassette (ABC) transporters play a crucial role, as their inhibition reduced resistance, aligning with findings from resistant tick populations in the field.

Article Abstract

The cattle tick Rhipicephalus microplus is one of the most economically damaging livestock ectoparasites, and its widespread resistance to acaricides is a considerable challenge to its control. In this scenario, the establishment of resistant cell lines is a useful approach to understand the mechanisms involved in the development of acaricide resistance, to identify drug resistance markers, and to develop new acaricides. This study describes the establishment of an ivermectin (IVM)-resistant R. microplus embryonic cell line, BME26-IVM. The resistant cells were obtained after the exposure of IVM-sensitive BME26 cells to increasing doses of IVM in a step-wise manner, starting from an initial non-toxic concentration of 0.5 μg/mL IVM, and reaching 6 μg/mL IVM after a 46-week period. BME26-IVM cell line was 4.5 times more resistant to IVM than the parental BME26 cell line (lethal concentration 50 (LC50) 15.1 ± 1.6 μg/mL and 3.35 ± 0.09 μg/mL, respectively). As an effort to determine the molecular mechanisms governing resistance, the contribution of ATP-binding cassette (ABC) transporter was investigated. Increased expression levels of ABC transporter genes were found in IVM-treated cells, and resistance to IVM was significantly reduced by co-incubation with 5 μM cyclosporine A (CsA), an ABC transporter inhibitor, suggesting the involvement of these proteins in IVM-resistance. These results are similar to those already described in IVM-resistant tick populations, and suggest that similar resistance mechanisms are involved in vitro and in vivo. They reinforce the hypothesis that ABC transporters are involved in IVM resistance and support the use of BME26-IVM as an in vitro approach to study acaricide resistance mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetpar.2014.05.042DOI Listing

Publication Analysis

Top Keywords

abc transporter
12
resistance
9
rhipicephalus microplus
8
abc transporters
8
mechanisms involved
8
acaricide resistance
8
μg/ml ivm
8
resistance mechanisms
8
ivm
6
cell
5

Similar Publications

MiRNAs: main players of cancer drug resistance target ABC transporters.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.

Chemotherapy remains the cornerstone of cancer treatment; however, its efficacy is frequently compromised by the development of chemoresistance. Multidrug resistance (MDR), characterized by the refractoriness of cancer cells to a wide array of chemotherapeutic agents, presents a significant barrier to achieving successful and sustained cancer remission. One critical factor contributing to this chemoresistance is the overexpression of ATP-binding cassette (ABC) transporters.

View Article and Find Full Text PDF

Protective role of ABCC drug subfamily resistance transporters (ABCC1-7) in intestinal inflammation.

Immunol Res

January 2025

Inflammatory Bowel Disease Clinic, Department of Gastroenterology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga #15, Col. Belisario Domínguez Sección XVI, 14080, Mexico City, CPCDMX, Mexico.

The ABCC subfamily contains thirteen members. Nine of these transporters are called multidrug resistance proteins (MRPs). The MRPs have been associated with developing ulcerative colitis (UC).

View Article and Find Full Text PDF

ABCB1 is a broad-spectrum efflux pump central to cellular drug handling and multidrug resistance in humans. However, how it is able to recognize and transport a wide range of diverse substrates remains poorly understood. Here we present cryo-EM structures of lipid-embedded human ABCB1 in conformationally distinct apo-, substrate-bound, inhibitor-bound, and nucleotide-trapped states at 3.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a prevalent neurodegenerative disorder, is characterized by mitochondrial dysfunction and immune dysregulation. This study is aimed at developing a risk prediction model for AD by integrating multi-omics data and exploring the interplay between mitochondrial energy metabolism-related genes (MEMRGs) and immune cell dynamics. We integrated four GEO datasets (GSE132903, GSE29378, GSE33000, GSE5281) for differential gene expression analysis, functional enrichment, and weighted gene co-expression network analysis (WGCNA).

View Article and Find Full Text PDF

Approaches to mitigate the severity of infections and of immune responses are still needed for the treatment of cystic fibrosis (CF) even with the success of highly effective modulator therapies. Previous studies identified reduced levels of melatonin in a CF mouse model related to circadian rhythm dysregulation. Melatonin is known to have immunomodulatory properties and it was hypothesized that treatment with melatonin would improve responses to bacterial infection in CF mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!