Temperature plays a critical role in determining the biology of ectotherms. Many animals have evolved mechanisms that allow them to compensate biological rates, i.e. adjust biological rates to overcome thermodynamic effects. For low energy-organisms, such as bivalves, the costs of thermal compensation may be greater than the benefits, and thus prohibitive. To examine this, two experiments were designed to explore thermal compensation in Unio tumidus. Experiment 1 examined seasonal changes in behaviour in U. tumidus throughout a year. Temperature had a clear effect on burrowing rate with no evidence of compensation. Valve closure duration and frequency were also strongly affected by seasonal temperature change, but there was slight evidence of partial compensation. Experiment 2 examined oxygen consumption during burrowing, immediately following valve opening and at rest in summer (24 °C), autumn (14 °C), winter (4 °C), and spring (14 °C) acclimatized U. tumidus. Again, there was little evidence of burrowing rate compensation, but some evidence of partial compensation of valve closure duration and frequency. None of the oxygen compensation rates showed any evidence of thermal compensation. Thus, in general, there was only very limited evidence of thermal compensation of behaviour and no evidence of thermal compensation of oxygen compensation rates. Based upon this evidence, we argue that there is no evolutionary pressure for these bivalves to compensate these biological rates. Any pressure may be to maintain or even lower oxygen consumption as their only defence against predation is to close their valves and wait. An increase in oxygen consumption will be detrimental in this regard so the cost of thermal compensation may outweigh the benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtherbio.2014.04.005 | DOI Listing |
J Am Chem Soc
January 2025
Université de Caen Normandie, ENSICAEN, CNRS, LCS, 14000 Caen, France.
Germanium is known to occupy tetrahedral sites by substituting silicon in germanosilicate zeolites. In this study, we present pioneering findings regarding the synthesis of zeolites with an MFI structure (GeMFI) incorporating a high germanium amount (16% Ge). Remarkably, the germanium atoms feature a slight electron deficiency with respect to GeO, and the typical coordination number of 4, as usually reported for the germanosilicate zeolites, is exceeded, giving rise to Ge dimers in a double-bridge configuration.
View Article and Find Full Text PDFHeliyon
January 2025
Transmission Electronic Microscopy Laboratory, Electronic Microscopy Unit, Department of Biology, University of Cauca, Popayán, 190002, Colombia.
A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.
View Article and Find Full Text PDFWarming associated with climate change is driving poleward shifts in the marine habitat of anadromous Pacific salmon ( spp.). Yet the spawning locations for salmon to establish self-sustaining populations and the consequences for the ecosystem if they should do so are unclear.
View Article and Find Full Text PDFAdv Mater
January 2025
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
The chirality of magnons, exhibiting left- and right-handed polarizations analogous to the counterparts of spin-up and spin-down, has emerged as a promising paradigm for information processing. However, the potential of this paradigm is constrained by the controllable excitation and transmission of chiral magnons. Here, the magnon transmission is explored in the GdFeO/NiO/Pt structures.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!