Complex coacervates of lactotransferrin and β-lactoglobulin.

J Colloid Interface Sci

Van 't Hoff Laboratory for Physical and Colloid Chemistry, Padualaan 8, Utrecht University, The Netherlands; NIZO Food Research, PO Box 20, 6710 BA Ede, The Netherlands. Electronic address:

Published: September 2014

Hypothesis: Oppositely charged proteins should interact and form complex coacervates or precipitates at the correct mixing ratios and under defined pH conditions.

Experiments: The cationic protein lactotransferrin (LF) was mixed with the anionic protein β-lactoglobulin (B-Lg) at a range of pH and mixing ratios. Complexation was monitored through turbidity and zeta potential measurements.

Findings: Complexation between LF and B-Lg did occur and complex coacervates were formed. This behaviour for globular proteins is rare. The charge ratio's of LF:B-Lg varies with pH due to changing (de) protonation of the proteins. Nevertheless we found that the complexes have a constant stoichiometry LF:B-Lg=1:3 at all pH's, due to charge regularization. At the turbidity maximum the zeta potential of complexes is close to zero, indicating charge neutrality; this is required when the complexes form a new concentrated liquid phase, as this must be electrically neutral. Complexes were formed in pH region 5-7.3. On addition of salt (NaCl) complexation is diminished and disappears at a salt concentration of about 100 mMol. The coacervate phase has a very viscous consistency. If we consider the proteins as colloidal particles then the formed complex coacervate phase may have a structure that resembles a molten salt comparable to, for example, AlCl3.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2014.05.036DOI Listing

Publication Analysis

Top Keywords

complex coacervates
12
mixing ratios
8
zeta potential
8
coacervate phase
8
complex
4
coacervates lactotransferrin
4
lactotransferrin β-lactoglobulin
4
β-lactoglobulin hypothesis
4
hypothesis oppositely
4
oppositely charged
4

Similar Publications

Chemically Triggered Reactive Coacervates Show Life-Like Budding and Membrane Formation.

J Am Chem Soc

January 2025

Institute of Advanced Materials (INAM), Universitat Jaume I, Castelló de la Plana 12071, Spain.

Phase-separated coacervates can enhance reaction kinetics and guide multilevel self-assembly, mimicking early cellular evolution. In this work, we introduce "reactive" complex coacervates that undergo chemically triggered self-immolative transformations, directing the self-assembly of the reaction products within their matrix. These self-assemblies then evolve to show life-like properties such as budding and membrane formation.

View Article and Find Full Text PDF

Peptide-Based Complex Coacervates Stabilized by Cation-π Interactions for Cell Engineering.

J Am Chem Soc

January 2025

Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.

View Article and Find Full Text PDF

Polymyxin E (PME), a polymyxin antibiotic, serves as a final resort against antibiotic resistance. Nephrotoxicity is the primary concern when employing PME. To alleviate this issue, researchers have explored strategies including dosing adjustments and innovative formulations.

View Article and Find Full Text PDF

Deer oil (DO) is a potentially beneficial functional oil; however, its sensitivity to environmental factors (e.g., oxygen and heat), difficulty in transport, and unfavorable taste hinder practical use.

View Article and Find Full Text PDF

Preparation, characterisation, and application of gelatin/sodium carboxymethyl cellulose/peach gum ternary composite microcapsules for encapsulating sweet orange essential oil.

Int J Biol Macromol

January 2025

College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China.

This study successfully developed a gelatin-sodium carboxymethyl cellulose-peach gum composite microcapsule system using the complex coacervation method. Optimal preparation conditions were determined by turbidity, complex condensate yield and encapsulation efficiency: the ratio of gelatin to sodium carboxymethyl cellulose was 7:1, the ratio of gelatin/sodium carboxymethyl cellulose to peach gum was 4:1, and the pH value was 4.2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!