Based on the potent anticancer activity of the D-arabino-configured cytosine nucleoside ara-C, novel 2'-substituted-4'-selenoarabinofuranosyl pyrimidines 3a-3u, comprising azido, fluoro, and hydroxyl substituents at C-2' were designed, synthesized, and evaluated for anticancer activity. The 2'-azido group was stereoselectively introduced by the Mitsunobu reaction using diphenylphosphoryl azide (DPPA), and the 2'-fluoro group was stereoselectively introduced through the double inversions of stereochemistry via the episelenium intermediate, which was formed by the participation of the selenium atom. Among the compounds tested, the 2'-fluoro derivative 3t (X = NH2, Y = H, R = F) was found to be the most potent anticancer agent and showed more potent anticancer activity than the control, ara-C in all tested human cancer cell lines (HCT116, A549, SNU638, T47D, and PC-3) except the leukemia cell lines (K562). The anticancer activity of the 2'-substituted-4'-selenonucleosides is in the following order: 2'-F > 2'-OH > 2'-N3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2014.06.031 | DOI Listing |
J Biol Eng
January 2025
Department of Aquatic Animals and Diseases, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye.
Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr city, Cairo, Egypt.
Cancer and microbial infections place a significant burden on the world's health systems and can increase the rate of disease and mortality. In the current study, a novel nanocomposite based on Gum Arabic, silver and copper oxide nanoparticles (GA@Ag-CuO nanocomposite) was synthesized to overcome the problem of microbial infection and in cancer treatment. Characterization using UV-Vis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
Collagen nanoparticles (collagen-NPs) possess numerous applications owing to their minimal immunogenicity, non-toxic nature, excellent biodegradability and biocompatibility. This study presents a novel sustainable technique for one-step green synthesis of hydrolyzed fish collagen-NPs (HFC-NPs) using a hot-water extract of Ulva fasciata biomass. HFC-NPs were characterized using TEM, FTIR, XRD, ζ-potential analyses, etc.
View Article and Find Full Text PDFBioorg Chem
December 2024
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
In this study, novel 2-styrylquinoline derivatives possessing a planar aromatic system and a flexible side chain with an amino substituent were designed and synthesized as DNA-intercalating antitumor agents. The cytotoxic activity of the synthesized compounds was evaluated against four cancer cell lines including MCF-7 (breast cancer cells), A549 (lung epithelial cancer cells), HCT116 (colon cancer cells) and normal cell line L929 (mouse fibroblast cell line). The results displayed that the anti-cancer activity of the target quinolines is sensitive to the lipophilic nature of the C-6 and C-7 quinoline substituents.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Molecular Biology Department, Biotechnology Research Institute, National Research Center, El-Buhouth St. 33, Dokki, P.O.12622, Giza, Egypt.
Background: Actinomycetes are a well-known example of a microbiological origin that may generate a wide variety of chemical structures. As excellent cell factories, these sources are able to manufacture medicines, agrochemicals, and enzymes that are crucial.
Results: In this study, about 34 randomly selected Streptomyces isolates were discovered in soil, sediment, sea water, and other environments.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!