Understanding bistability in yeast glycolysis using general properties of metabolic pathways.

Math Biosci

Department of Mathematics, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.

Published: September 2014

Unlabelled: Glycolysis is the central pathway in energy metabolism in the majority of organisms. In a recent paper, van Heerden et al. showed experimentally and computationally that glycolysis can exist in two states, a global steady state and a so-called imbalanced state. In the imbalanced state, intermediary metabolites accumulate at low levels of ATP and inorganic phosphate. It was shown that Baker's yeast uses a peculiar regulatory mechanism--via trehalose metabolism--to ensure that most yeast cells reach the steady state and not the imbalanced state.

Results: Here we explore the apparent bistable behaviour in a core model of glycolysis that is based on a well-established detailed model, and study in great detail the bifurcation behaviour of solutions, without using any numerical information on parameter values.

Conclusion: We uncover a rich suite of solutions, including so-called imbalanced states, bistability, and oscillatory behaviour. The techniques employed are generic, directly suitable for a wide class of biochemical pathways, and could lead to better analytical treatments of more detailed models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mbs.2014.06.006DOI Listing

Publication Analysis

Top Keywords

steady state
8
so-called imbalanced
8
imbalanced state
8
state imbalanced
8
understanding bistability
4
bistability yeast
4
glycolysis
4
yeast glycolysis
4
glycolysis general
4
general properties
4

Similar Publications

We propose reinforcement learning to control the dynamical self-assembly of a dodecagonal quasicrystal (DDQC) from patchy particles. Patchy particles undergo anisotropic interactions with other particles and form DDQCs. However, their structures in steady states are significantly influenced by the kinetic pathways of their structural formation.

View Article and Find Full Text PDF

Emergence of synchronization-induced patterns in two-dimensional magnetic rod systems under rotating magnetic fields.

Soft Matter

January 2025

Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza, Ceará, Brazil.

We investigate the dynamics of two-dimensional assemblies of rod-shaped magnetic colloids under the influence of an external rotating magnetic field. Using molecular dynamics, we simulate the formation of patterns that emerge based on the synchronization degree between the magnetic rods and the rotating field. We then explore the structural and dynamic characteristics of the resulting steady states, examining their evolution as a function of changes in the rods' aspect ratio, the strength of the external magnetic field, and its rotation frequency.

View Article and Find Full Text PDF

Plasma inflammatory and angiogenic protein profiling of patients with sickle cell disease.

Br J Haematol

January 2025

Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands.

In this study, we aimed to explore the inflammatory and angiogenic pathways in sickle cell disease (SCD). We used proximity extension assay technology (Olink) to measure 92 plasma proteins involved in inflammation and angiogenesis. Plasma samples were collected from 57 SCD patients (sickle cell anaemia/HbS-β thalassaemia-thalassaemia) in steady-state and 13 healthy ethnicity-matched healthy controls (HCs).

View Article and Find Full Text PDF

Excitation-mode-selective emission through multiexcitonic states in a double perovskite single crystal.

Light Sci Appl

January 2025

Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, China.

Low-dimensional lead-free metal halide perovskites are highly attractive for cutting-edge optoelectronic applications. Herein, we report a class of scandium-based double perovskite crystals comprising antimony dopants that can generate multiexcitonic emissions in the ultraviolet, blue, and yellow spectral regions. Owing to the zero-dimensional nature of the crystal lattice that minimizes energy crosstalk, different excitonic states in the crystals can be selectively excited by ultraviolet light, X-ray irradiation, and mechanical action, enabling dynamic control of steady/transient-state spectral features by modulating the excitation modes.

View Article and Find Full Text PDF

Functional diversity of cardiac macrophages in health and disease.

Nat Rev Cardiol

January 2025

Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.

Macrophages make up a substantial portion of the stromal compartment of the heart in health and disease. In the past decade, the origins of these cardiac macrophages have been established as two broad populations derived from either embryonic or definitive haematopoiesis and that can be distinguished by the expression of CC-motif chemokine receptor 2 (CCR2). These cardiac macrophage populations are transcriptionally distinct and have differing cell surface markers and divergent roles in cardiac homeostasis and disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!