A novel microfluidic approach is developed to prepare multicolor QDs-encoded core-shell microparticles with precise and various barcode and enhanced stability performance. With the protection of the hydrogel shell, the leakage of QDs is avoided and the fluorescent stability is enhanced greatly. By embedding different QDs into different cores, no interaction between different QDs existed and the fluorescence spectrum of each kind of QDs can be recorded, respectively. Compared with QDs mixtures in a single particle, it is unnecessary to separate the emissions of QDs in different colors, and deconvolution algorithms are not needed. Therefore, it still maintains precise coding even if QDs with approximate emission wavelengths are used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la501692h | DOI Listing |
Waste Manag
December 2024
Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Electronic address:
Front Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
ACS Meas Sci Au
December 2024
Chemical and Optical Sensing Division, Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str. 11, Berlin D-12489, Germany.
Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core-shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland.
To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems that offer precise control over active ingredient release while minimizing burst effects are considered advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was explored through the fabrication of polyelectrolyte-coated microparticles. LV was covalently attached to poly(ε-caprolactone) via ring-opening polymerization, resulting in a macromolecular prodrug (LV-PCL) with a hydrolytic release mechanism.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
This study reports the successful synthesis of core-shell microparticles utilizing coaxial electrospray techniques, with zeolitic imidazolate framework-8 (ZIF-8) encapsulating rhodamine B (RhB) in the core and a phase change material (PCM) shell composed of a eutectic mixture of lauric acid (LA) and stearic acid (SA). ZIF-8 is well-recognized for its pH-responsive degradation and biocompatibility, making it an ideal candidate for targeted drug delivery. The LA-SA PCM mixture, with a melting point near physiological temperature (39 °C), enables temperature-triggered drug release, enhancing therapeutic precision.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!