A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and fluorescence properties of N-substituted 1-cyanobenz[f]isoindole chitosan polymers and nanoparticles for live cell imaging. | LitMetric

Highly fluorescent N-substituted 1-cyanobenz[f]isoindole chitosans (CBI-CSs) with various degrees of N-substitution (DS) were synthesized by reacting chitosan (CS) with naphthalene-2,3-dicarboxaldehyde (NDA) in the presence of cyanide under mild acidic conditions. Introduction of 1-cyanobenz[f]isoindole moieties into the CS backbone resulted in lowering of polymer thermal stability and crystallinity. The fluorescence quantum yield (Φf) of CBI-CS was found to be DS- and molecular-weight-dependent, with Φf decreasing as DS and molecular weight were increased. At similar DS values, CBI-CS exhibited 26 times higher Φf in comparison with fluorescein isothiocyanate-substituted chitosan (FITC-CS). CBI-CS/TPP nanoparticles were fabricated using an ionotropic gelation method in which pentasodium triphosphate (TPP) acted as a cross-linking agent. CS and CBI-CS exhibited low cytotoxicity to normal skin fibroblast cells over a concentration range of 0.1-1000 μg/mL, while an increased cytotoxicity level was evident in CBI-CS/TPP nanoparticles at concentrations greater than 100 μg/mL. In contrast with CBI-CS polymers, the CBI-CS/TPP nanoparticles exhibited lower fluorescence; however, confocal microscopy results showed that living normal skin fibroblast cells became fluorescent on nanoparticle uptake. These results suggest that CBI-CS and fabricated nanoparticles thereof may be promising fluorescence probes for live cell imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm5004459DOI Listing

Publication Analysis

Top Keywords

cbi-cs/tpp nanoparticles
12
n-substituted 1-cyanobenz[f]isoindole
8
live cell
8
cell imaging
8
cbi-cs exhibited
8
normal skin
8
skin fibroblast
8
fibroblast cells
8
nanoparticles
5
cbi-cs
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!