When long-term memories are reactivated, they can reenter a transient plastic state in which they are vulnerable to interference or physiological manipulations. The present study attempted to directly affect reactivated memories through a stress manipulation, and compared the effects of stress on reactivated and nonreactivated components of a declarative memory in a within-subject design. We presented image pairs that consisted of an image of an animal and an image of an unrelated object. Participants were instructed to memorize the object images. Forty-eight hours later, we presented half of the animal images again in an unrelated task to indirectly reactivate the associated object images. Immediately after reactivation, participants were exposed to cold pressor stress or a warm water control condition. Forty-eight hours later, we assessed memory for the object images with a free recall test. Reactivation boosted memory performance in the control condition, such that reactivated items were better recalled than nonreactivated items. This memory-enhancing effect of reactivation was completely abolished by cold pressor stress. Importantly, stress selectively impacted only the reactivated items while leaving memory for the nonreactivated items unaffected. The present study shows that it is possible to selectively reactivate and modulate specific parts of a declarative memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/bne0000006 | DOI Listing |
Georgian Med News
November 2024
Lab. Neurobiology of Sleep-Wakefulness Cycle, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia.
Aim: The present investigation aimed to explore in rats the early postnatal dysfunction of the brain muscarinic cholinergic system (EPDMChS) during the most vulnerable period of postnatal development, as the possible main factor for changes in adult hippocampal neurogenesis and disorders in hippocampus-dependent spatial learning and memory.
Methods: White inbred rats (n=15 in each group) were used. EPDMCHS was produced by a new method, which includes early postnatal blocking of M1-M5 muscarinic acetylcholine receptors in the rat pups, using subcutaneous injection of Scopolamine during postnatal days 7-28.
J Cannabis Res
January 2025
Department of Biology, Colorado State University Pueblo, 2200 Bonforte Blvd, Pueblo, CO, 81001, USA.
Background: The effect of oral Cannabidiol (CBD) on interference during learning and memory (L&M) in healthy human volunteers has not been studied.
Method: A two-arm crossover, randomized, double-blind, placebo-controlled trial was conducted at Colorado State University Pueblo (CSU Pueblo) to evaluate the effects of 246 mg oral CBD on L&M in healthy adults. Among 57 healthy volunteers enrolled, 35 were included in the analyses.
Hum Brain Mapp
February 2025
Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.
Implicit motor learning involves the acquisition and consolidation of motor skills without conscious awareness, influenced by various factors. Punishment and reward have been identified as significant modulators during training, impacting skill acquisition differently. Additionally, the role of a second declarative task in offline consolidation has been explored, affecting both stabilization and enhancement processes during wake and sleep periods.
View Article and Find Full Text PDFBrain Behav
January 2025
Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (CAS), Beijing, the People's Republic of China.
Background: Psychotherapeutic memory plays an important role in maintaining therapeutic effects; however, the neural mechanisms of therapeutic metaphor promoting long-term memory were still unknown.
Objective: This study used metaphorical micro-counseling dialog scenarios to investigate the memory effect of therapeutic metaphor and correlated neural mechanisms.
Methods: At first, 31 participants read a mental distress problem, followed by a metaphorical or a literal solution, while undergoing functional magnetic resonance imaging scanning during the encoding phase.
NPJ Sci Learn
January 2025
Department of Neurotechnology, Medical Faculty, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum, 44801, Germany.
New information that is compatible with pre-existing knowledge can be learned faster. Such schema memory effect has been reported in declarative memory and in explicit motor sequence learning (MSL). Here, we investigated if sequences of key presses that were compatible to previously trained ones, could be learned faster in an implicit MSL task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!