In drug discovery, reliable and fast dereplication of known compounds is essential for identification of novel bioactive compounds. Here, we show an integrated approach using ultra-high performance liquid chromatography-diode array detection-quadrupole time of flight mass spectrometry (UHPLC-DAD-QTOFMS) providing both accurate mass full-scan mass spectrometry (MS) and tandem high resolution MS (MS/HRMS) data. The methodology was demonstrated on compounds from bioactive marine-derived strains of Aspergillus, Penicillium, and Emericellopsis, including small polyketides, non-ribosomal peptides, terpenes, and meroterpenoids. The MS/HRMS data were then searched against an in-house MS/HRMS library of ~1300 compounds for unambiguous identification. The full scan MS data was used for dereplication of compounds not in the MS/HRMS library, combined with ultraviolet/visual (UV/Vis) and MS/HRMS data for faster exclusion of database search results. This led to the identification of four novel isomers of the known anticancer compound, asperphenamate. Except for very low intensity peaks, no false negatives were found using the MS/HRMS approach, which proved to be robust against poor data quality caused by system overload or loss of lock-mass. Only for small polyketides, like patulin, were both retention time and UV/Vis spectra necessary for unambiguous identification. For the ophiobolin family with many structurally similar analogues partly co-eluting, the peaks could be assigned correctly by combining MS/HRMS data and m/z of the [M + Na]+ ions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071597PMC
http://dx.doi.org/10.3390/md12063681DOI Listing

Publication Analysis

Top Keywords

ms/hrms data
16
ms/hrms library
12
ms/hrms
8
dereplication compounds
8
identification novel
8
mass spectrometry
8
small polyketides
8
unambiguous identification
8
data
6
compounds
5

Similar Publications

Study of phenanthrenes from their unique mass spectrometric behavior through quantum chemical calculations to liquid chromatographic quantitation.

Talanta

January 2025

Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Somogyi utca 4, H-6720, Szeged, Hungary; Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40, H-6724, Szeged, Hungary. Electronic address:

Phenanthrenes and their derivatives have biological relevance owing to their antimicrobial, antioxidant, and cytotoxic effects on cancer cells. They can be efficiently analyzed through ultrahigh-performance liquid chromatography coupled to tandem high-resolution mass spectrometry (UHPLC-MS/HRMS). Herein, we first studied the unique fragmentation behavior of phenanthrenes based on direct infusion MS/HRMS analysis.

View Article and Find Full Text PDF

Monitoring of drug use in athletes is of interest both for health and competition-related issues. Considering the advantages of Dried Blood Sampling (low invasiveness, easy sampling, long term storage), we have validated a quantitative LC-MS/HRMS method for the screening of 16 nonsteroidal anti-inflammatory drugs. For all drugs, accuracy and imprecision were within 15% for the 3 levels of quality control and lower than 20% for the lower limit of quantification.

View Article and Find Full Text PDF

Technical advances in the field of quality analysis allow an increasingly deeper look into the impurity profile of drugs. The ability to detect unexpected impurities in addition to known impurities ensures the supply of high-quality drugs and can prevent recalls due to the detection of harmful unexpected impurities, as has happened recently with the N-nitrosamine and azido impurities in losartan (LOS) drug products. In the present study, the LC-MS/HRMS approach described by Backer et al.

View Article and Find Full Text PDF

Objectives: Urinary sex hormones are investigated as potential biomarkers for the early detection of breast cancer, aiming to evaluate their relevance and applicability, in combination with supervised machine-learning data analysis, toward the ultimate goal of extensive screening.

Methods: Sex hormones were determined on urine samples collected from 250 post-menopausal women (65 healthy - 185 with breast cancer, recruited among the clinical patients of Candiolo Cancer Institute FPO-IRCCS (Torino, Italy). Two analytical procedures based on UHPLC-MS/HRMS were developed and comprehensively validated to quantify 20 free and conjugated sex hormones from urine samples.

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is a simple and highly effective sample-preparation technique for water analysis. However, the extraction coverage of a given SPME device with a specific coating can be an issue when analyzing multiple environmental contaminants. Therefore, instead of synthesizing one sorbent material with dual or multiple functions, we investigated a new strategy of preparing SPME blades using a homogeneous slurry made by mixing three different sorbent particles─namely, hydrophobic/lipophilic balanced (HLB), HLB-weak cationic exchange (HLB-WCX), and HLB-weak anionic exchange (HLB-WAX)─with a polyacrylonitrile (PAN) binder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!