Bone marrow derived macrophages (BM-MΦ) that differentiate from precursor cells can be polarized into classically activated pro-inflammatory (M1) or alternatively activated (M2) states depending upon the cytokine microenvironment. We questioned whether tissue MΦ, such as spleen-derived MΦ (Sp-MΦ), have the ability to differentiate into M1 or M2 cells. We show in response to activation with IFN-gamma (IFN-γ) and lipopolysaccharide (LPS), that the Sp-MΦ readily acquired an M1 status indicated by up-regulation of iNOS mRNA, nitric oxide (NO) production, and the co-stimulatory molecule CD86. Conversely, Sp-MΦ exposed to IL-4 exhibited increased levels of mannose receptor (CD 206), arginase-1 (Arg)-1 mRNA expression, and significant urea production typical of M2 cells. At this stage of differentiation, the M2 Sp-MΦ were more efficient at phagocytosis of cell-associated antigens than their M1 counterparts. This polarization was not indefinite as the cells could revert back to their original state upon the removal of stimuli and exhibited flexibility to convert from M2 to M1. Remarkably, both M1 and M2 Sp-MΦ induced more CD4 expression on their cells surface after stimulation. We also demonstrate that adherent macrophages cultured for a short term in IL-4 enhances ARG-1 and YM-1 mRNA along with increasing urea producing capacity: traits indicative of an M2 phenotype. Moreover, in response to in vivo virus infection, the adherent macrophages obtained from spleens rapidly express iNOS. These results provide new evidence for the polarization capabilities of Sp-MΦ when exposed to pro-inflammatory or anti-inflammatory cytokines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.imbio.2014.05.005 | DOI Listing |
Light Sci Appl
January 2025
National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.
Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
: Macrophages play a pivotal role in various pathogenic processes, necessitating the development of efficient differentiation techniques to meet the high demand for these cells in research and therapy. Human macrophages can be obtained via culturing peripheral blood monocytes; however, this source has limited yields and requires patient contact for each proposed use. In addition, it would be difficult to perform gene editing on peripheral blood monocytes.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
School of Petroleum Engineering, Yangtze University, Wuhan 430100, China.
Optimization algorithms play a crucial role in solving complex problems across various fields, including global optimization and feature selection (FS). This paper presents the enhanced polar lights optimization with cryptobiosis and differential evolution (CPLODE), a novel improvement upon the original polar lights optimization (PLO) algorithm. CPLODE integrates a cryptobiosis mechanism and differential evolution (DE) operators to enhance PLO's search capabilities.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Department of Structure of Matter, Thermal Physics and Electronics, Faculty of Physics, Complutense University of Madrid, 28040 Madrid, Spain.
The entropy production in the polarization phenomena occurring in the underlimiting regime, when an electric current circulates through a single cation-exchange membrane system, has been investigated in the 3-40 °C temperature range. From the analysis of the current-voltage curves and considering the electro-membrane system as a unidimensional heterogeneous system, the total entropy generation in the system has been estimated from the contribution of each part of the system. Classical polarization theory and the irreversible thermodynamics approach have been used to determine the total electric potential drop and the entropy generation, respectively, associated with the different transport mechanisms in each part of the system.
View Article and Find Full Text PDFCancer Control
January 2025
Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, PR China.
Background: Macrophages are a critical component of the innate immune system, derived from monocytes, with significant roles in anti-inflammatory and anti-tumour activities. In the tumour microenvironment, however, macrophages are often reprogrammed into tumour-associated macrophages (TAMs), which promote tumour growth, metastasis, and therapeutic resistance.
Purpose: To review recent advancements in the understanding of macrophage polarisation and reprogramming, highlighting their role in tumour progression and potential as therapeutic targets.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!