The concepts of global and local coupling between proton generators, the enzymes of the respiratory chain, and the consumer, the ATP synthase, coexist in the theory of oxidative phosphorylation. Global coupling is trivial proton transport via the aqueous medium, whereas local coupling implies that the protons pumped are consumed before they escape to the bulk phase. In this work, the conditions for the occurrence of local coupling are explored. It is supposed that the membrane retains protons near its surface and that the proton current generated by the proton pumps rapidly decreases with increasing proton motive force (pmf). It is shown that the competition between the processes of proton translocation across the membrane and their dissipation from the surface to the bulk can result in transient generation of a local ΔpH in reply to a sharp change in pmf; the appearance of local ΔpH, in turn, leads to rapid recovery of the pmf, and hence, it provides for stabilization of the potential at the membrane. Two mechanisms of such kind are discussed: 1) pH changes in the surface area due to proton pumping develop faster than those due to proton escape to the bulk; 2) the former does not take place, but the protons leaving the surface do not equilibrate with the bulk immediately; rather, they give rise to a non-equilibrium concentration near the surface and, as a result, to a back proton flow to the surface. The first mechanism is more efficient, but it does not occur in mitochondria and neutrophilic bacteria, whereas the second can produce ΔpH on the order of unity. In the absence of proton retardation at the surface, local ΔpH does not arise, whereas the formation of global ΔpH is possible only at buffer concentration of less than 10 mM. The role of the mechanisms proposed in transitions between States 3 and 4 of the respiratory chain is discussed. The main conclusion is that surface protons, under conditions where they play a role, support stabilization of the membrane pmf and rapid communication between proton generators and consumers, while their contribution to the energetics is not significant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1134/S000629791405006X | DOI Listing |
J Mol Model
September 2024
Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile, 7820436.
Context: An inclusion complex between 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH), a widely employed azocompound, and cucurbit[7]util (CB[7]), has shown an increased yield of radicals derived from the homolytic cleavage of the azo bond. Aimed to get insights about the formation of complexes and their effect on the yield of radicals production, complexes of CB[7] with seven azocompounds were studied by computational methods. Molecular electrostatic surfaces and structural analysis showed that the inclusion of symmetrical azocompounds inside of CB[7] depends mainly on the charge density and position of the functional groups at the main chain of the azoderivative.
View Article and Find Full Text PDFMolecules
June 2024
Department of Physics and Biophysics, The Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida Str. 25, 50-375 Wrocław, Poland.
Sea buckthorn and Japanese knotweed are known in many traditional medicine systems to be a great source of bioactive substances. This research aims to compare the bioactivity and protective effects of the phenolic extracts of leaves from sea buckthorn and roots and leaves from the Japanese knotweed on erythrocytes. The polyphenol composition of the extract was analyzed using UPLC-PDA-ESI-MS/MS.
View Article and Find Full Text PDFBioengineering (Basel)
May 2024
Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of TCM/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
Sci Rep
December 2022
Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.
Escherichia coli glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) are key enzymes of the pentose phosphate pathway, responsible for the NADPH production in cells. We investigated modification of both enzymes mediated by peroxyl radicals (ROO) to determine their respective susceptibilities to and mechanisms of oxidation. G6PDH and 6PGDH were incubated with AAPH (2,2'-azobis(2-methylpropionamidine)dihydrochloride), which was employed as ROO source.
View Article and Find Full Text PDFACS Nano
November 2022
Department of Bioengineering, Rice University, Houston, Texas 77030, United States.
Metastasis is the predominant cause of cancer deaths due to solid organ malignancies; however, anticancer drugs are not effective in treating metastatic cancer. Here we report a nanotherapeutic approach that combines magnetic nanocluster-based hyperthermia and free radical generation with an immune checkpoint blockade (ICB) for effective suppression of both primary and secondary tumors. We attached 2,2'-azobis(2-midinopropane) dihydrochloride (AAPH) molecules to magnetic iron oxide nanoclusters (IONCs) to form an IONC-AAPH nanoplatform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!