Hyperbolic Dirac Nets for medical decision support. Theory, methods, and comparison with Bayes Nets.

Comput Biol Med

St. Matthew's University School of Medicine, Grand Cayman; Department of Mathematics Statistics and Computer Science, University of Wisconsin-Stout, WI, US; The Dirac Foundation, Oxfordshire, UK; Quantal Semantics Inc., VA, US. Electronic address:

Published: August 2014

We recently introduced the concept of a Hyperbolic Dirac Net (HDN) for medical inference on the grounds that, while the traditional Bayes Net (BN) is popular in medicine, it is not suited to that domain: there are many interdependencies such that any "node" can be ultimately conditional upon itself. A traditional BN is a directed acyclic graph by definition, while the HDN is a bidirectional general graph closer to a diffuse "field" of influence. Cycles require bidirectionality; the HDN uses a particular type of imaginary number from Dirac׳s quantum mechanics to encode it. Comparison with the BN is made alongside a set of recipes for converting a given BN to an HDN, also adding cycles that do not usually require reiterative methods. This conversion is called the P-method. Conversion to cycles can sometimes be difficult, but more troubling was that the original BN had probabilities needing adjustment to satisfy realism alongside the important property called "coherence". The more general and simpler K-method, not dependent on the BN, is usually (but not necessarily) derived by data mining, and is therefore also introduced. As discussed, BN developments may converge to an HDN-like concept, so it is reasonable to consider the HDN as a BN extension.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2014.03.014DOI Listing

Publication Analysis

Top Keywords

hyperbolic dirac
8
cycles require
8
hdn
5
dirac nets
4
nets medical
4
medical decision
4
decision support
4
support theory
4
theory methods
4
methods comparison
4

Similar Publications

Landau-phonon polaritons in Dirac heterostructures.

Sci Adv

September 2024

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA.

Article Synopsis
  • Polaritons are quasiparticles formed from light and matter that influence how quantum materials respond optically, making them useful for technologies like communication and sensing at the nanoscale.
  • The study focuses on Landau-phonon polaritons (LPPs) found in magnetized, charge-neutral graphene that is encapsulated in a material called hexagonal boron nitride (hBN), revealing new interactions between different particle modes.
  • Using a technique called infrared magneto-nanoscopy, researchers discovered that they can completely stop the movement of LPPs at specific magnetic fields, which challenges traditional optical rules and provides insights into critical phenomena related to electrons in the material.
View Article and Find Full Text PDF

Topological Insulator Metamaterials.

Chem Rev

April 2023

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.

Confinement of electromagnetic fields at the subwavelength scale via metamaterial paradigms is an established method to engineer light-matter interaction in most common material systems, from insulators to semiconductors and from metals to superconductors. In recent years, this approach has been extended to the realm of topological materials, providing a new avenue to access nontrivial features of their electronic band structure. In this review, we survey various topological material classes from a photonics standpoint, including crystal growth and lithographic structuring methods.

View Article and Find Full Text PDF

We consider the quantum electrodynamics of single photons in arrays of one-way waveguides, each containing many atoms. We investigate both chiral and antichiral arrays, in which the group velocities of the waveguides are the same or alternate in sign, respectively. We find that in the continuum limit, the one-photon amplitude obeys a Dirac equation.

View Article and Find Full Text PDF

Strain engineering of hyperbolic plasmons in monolayer carbon phosphide: a first-principles study.

Nanoscale

February 2023

School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14395-515, Iran.

Natural and tunable in-plane hyperbolic plasmons have so far been elusive, and hence few two-dimensional hyperbolic materials have been theoretically and experimentally discovered. Here, comprehensive first-principles calculations were conducted to study the electronic and plasmonic properties of biaxially strained monolayer carbon phosphide (β-CP). We found that (i) a compressed β-CP hosts strong anisotropic Dirac-shaped fermions with robust modulated Fermi velocity, (ii) for biaxial strain of -3% an unprecedented ultra-wide hyperbolic window is extended continuously from terahertz (9 THz) to mid-visible (blue light, 693 THz), (iii) the tunable optical Van Hove singularity as the origin of hyperbolic plasmons in deformed β-CP is disclosed, (iv) an elliptic to hyperbolic transition in the σ-near-zero regime is demonstrated in terahertz frequencies (9 THz), (v) the propagation angle of the concave wavefront can be actively tuned using biaxial strains, and (vi) hyperbolic dispersion reorientation from one principal axis to another orthogonal one under compressive strains larger than 8% is observed.

View Article and Find Full Text PDF

Massive Dirac fermions are low-energy electronic excitations characterized by a hyperbolic band dispersion. They play a central role in several emerging physical phenomena such as topological phase transitions, anomalous Hall effects, and superconductivity. This work demonstrates that massive Dirac fermions can be controllably induced by lithographically patterning superstructures of nanoscale holes in a graphene device.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!