Rotavirus (RoV) and adenovirus (AdV) are important viral pathogens for the risk analysis of drinking water. Despite this, little is known about their retention and transport behaviors in porous media due to a lack of representative surrogates. We developed RoV and AdV surrogates by covalently coupling 70-nm sized silica nanoparticles with specific proteins and a DNA marker for sensitive detection. Filtration experiments using beach sand columns demonstrated the similarity of the surrogates' concentrations, filtration efficiencies and attachment kinetics to those of the target viruses. The surrogates showed the same magnitude of concentration reduction as the viruses. Conversely, MS2 phage (a traditional virus model) over-predicted concentrations of AdV and RoV by 1- and 2-orders of magnitude respectively. The surrogates remained stable in size, surface charge and DNA concentration for at least one year. They can be easily and rapidly detected down to a single particle. Preliminary tests suggest that they were readily detectable in a number of environmental waters and treated effluent. With up-scaling validation in pilot trials, the surrogates developed here could be a cost-effective new tool for studying virus retention and transport in porous media. Examples include assessing filter efficacy in water and wastewater treatment, tracking virus migration in groundwater after effluent land disposal, and establishing safe setback distances for groundwater protection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2014.05.055DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
8
retention transport
8
porous media
8
surrogates developed
8
surrogates
5
mimicking filtration
4
filtration transport
4
transport rotavirus
4
rotavirus adenovirus
4
adenovirus sand
4

Similar Publications

measurement and mapping of oxygen levels within the tissues are crucial in understanding the physiopathological processes of numerous diseases, such as cancer, diabetes, or peripheral vascular diseases. Electron paramagnetic resonance (EPR) associated with biocompatible exogenous spin probes, such as Ox071 triarylmethyl (TAM) radical, is becoming the new gold standard for oxygen mapping in preclinical settings. However, these probes do not show tissue selectivity when injected systemically, and they are not cell permeable, reporting oxygen from the extracellular compartment only.

View Article and Find Full Text PDF

Inverse vulcanization (IV) enables the production of sustainable polymer from sulfur waste, offering hydrophobic, fluorine-free, and superhydrophobic coatings. However, these materials need adhesion improvements for enhanced durability. This study has developed an epoxy-, fluorine-, and metal-free superhydrophobic coating using the spray-coating of carbon nanofibers (CNFs), silica nanoparticles, and IV polymers on glass.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).

View Article and Find Full Text PDF

Encapsulation of Oil Droplets Using Film-Forming Janus Nanoparticles.

Langmuir

January 2025

School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.

Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).

View Article and Find Full Text PDF

Many different types of nanoparticles have been developed for photothermal therapy (PTT), but directly comparing their efficacy as heaters and determining how they will perform when localized at depth in tissue remains complex. To choose the optimal nanoparticle for a desired hyperthermic therapy, it is vital to understand how efficiently different nanoparticles extinguish laser light and convert that energy to heat. In this paper, we apply photothermal mass conversion efficiency (η ) as a metric to compare nanoparticles of different shapes, sizes, and conversion efficiencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!