Coculturing of two white-rot fungi, Dichomitus squalens and Ceriporiopsis subvermispora, was explored for the optimization of cultivation media for simultaneous augmentation of laccase and peroxidase activities by response surface methodology (RSM). Nutrient parameters chosen from our previous studies with the monocultures of D. squalens and C. subvermispora were used to design the experiments for the cocultivation study. Glucose, arabinose, sodium nitrate, casein, copper sulfate (CuSO4 ), and manganese sulfate (MnSO4 ) were combined according to central composite design and used as the incubation medium for the cocultivation. The interaction of glucose and sodium nitrate resulted in laccase and peroxidase activities of approximately 800 U/g protein. The addition of either glucose or sodium nitrate to the medium also modifies the impact of other nutrients on the ligninolytic activity. Both enzyme activities were cross-regulated by arabinose, casein, CuSO4 , and MnSO4 as a function of concentrations. Based on RSM, the optimum nutrient levels are 1% glucose, 0.1% arabinose, 20 mM sodium nitrate, 0.27% casein, 0.31 mM CuSO4 , and 0.07 mM MnSO4 . Cocultivation resulted in the production of laccase of 1,378 U/g protein and peroxidase of 1,372 U/g protein. Lignin (16.9%) in wheat straw was degraded by the optimized enzyme mixture.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bab.1263DOI Listing

Publication Analysis

Top Keywords

sodium nitrate
16
u/g protein
12
dichomitus squalens
8
squalens ceriporiopsis
8
ceriporiopsis subvermispora
8
laccase peroxidase
8
peroxidase activities
8
arabinose sodium
8
glucose sodium
8
nutrient media
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!