The link between dysregulated serotonergic activity and depression and anxiety disorders is well established, yet the molecular mechanisms underlying these psychopathologies are not fully understood. Here, we explore the role of microRNAs in regulating serotonergic (5HT) neuron activity. To this end, we determined the specific microRNA "fingerprint" of 5HT neurons and identified a strong microRNA-target interaction between microRNA 135 (miR135), and both serotonin transporter and serotonin receptor-1a transcripts. Intriguingly, miR135a levels were upregulated after administration of antidepressants. Genetically modified mouse models, expressing higher or lower levels of miR135, demonstrated major alterations in anxiety- and depression-like behaviors, 5HT levels, and behavioral response to antidepressant treatment. Finally, miR135a levels in blood and brain of depressed human patients were significantly lower. The current results suggest a potential role for miR135 as an endogenous antidepressant and provide a venue for potential treatment and insights into the onset, susceptibility, and heterogeneity of stress-related psychopathologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuron.2014.05.042 | DOI Listing |
Mol Biomed
December 2024
Department of Gastrointestinal Surgery, Cancer Center and State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-Related Molecular Network, Laboratory of Gastrointestinal Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, 610041, China.
Molecules in immune cells plays a vital role in the pathogenesis of ischemic stroke (IS). The aim of this study is to profile the landscape of molecules on the basis of immune cells in IS peripheral blood and construct an immunoregulatory competing endogenous RNA (ceRNA) network. We collected and combined multiple public transcriptome datasets from the peripheral blood of IS patients and healthy controls.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education Chongqing, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
Herein, a novel zinc-organic gel with self-catalysis-enhanced electrochemiluminescence (ECL) performance was prepared as an emitter for the first time to assemble a biosensor for ultrasensitive detection of microRNA-221 (miR-221) related to liver cancer. Interestingly, Zn served as a central ion to coordinate with multidentate ligands 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (TATB) at room temperature to form Zn-TATB-MOGs with excellent ECL intensity. More importantly, compared to metal ions (e.
View Article and Find Full Text PDFHealth Inf Sci Syst
December 2025
Medical School, Kunming University of Science & Technology, #727 Jing Ming Nan Road, Chenggong County, Kunming, 650500 Yunnan China.
Background: Circular RNAs (circRNAs) are involved in the occurrence and development of various tumors. CircRNAs can act as competing endogenous RNAs (ceRNAs), which are important regulatory networks, by regulating microRNAs (miRNAs). However, the effects of ceRNA networks on lung cancer (LC), especially the circRNA-miRNA-mRNA regulatory network, remain incompletely understood.
View Article and Find Full Text PDFPhytomedicine
December 2024
Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan; PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. Electronic address:
Background: Triple-negative breast cancer (TNBC) recurrence and metastasis are the major causes of failure in TNBC therapy. The difficulties in treating TNBCs may be because of increased cancer cell plasticity that involves the fine-tuning of cellular redox homeostasis, mitochondrial bioenergetics, metabolic characteristics, and the development of cancer stem cells (CSCs).
Purpose: To investigate the effects and the underlying mechanisms of the phytosesquiterpene lactone deoxyelephantopin (DET) and its semi-synthesized derivative (DETD-35) in suppressing different phenotypic TNBC cell populations that contribute to tumor metastasis.
Phytomedicine
December 2024
The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730000, Gansu, PR China. Electronic address:
Background: M2-polarized tumor-associated macrophages (TAMs) predominate in tumor microenvironment (TME) and serve primary functions in tumor progression, including growth, angiogenesis, metastasis, immunosuppression, chemoresistance, and poor prognosis. The reversal of M2 polarization provides a new treatment strategy for cancer. Presently, the molecular mechanisms of M2 polarization have yet to be fully characterized, and there is a lack of effective therapeutic targets and drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!