Prostate cancer is the second leading cause of non-cutaneous cancer-related death in males, and effective strategies for treatment of metastatic disease are currently limited. The tight junction proteins, claudin 3 and claudin 4, serve as cell-surface receptors for the pore-forming Clostridium perfringens enterotoxin [CPE]. Most prostate cancer cells overexpress claudin 3 and claudin 4, and claudins are aberrantly distributed over the plasma membrane, making these cells particularly sensitive to cytolysis by CPE. Prostate cancer cells secrete PSA locally that is proteolytically active; however, circulating PSA is inactivated via binding to protease inhibitors. To overcome systemic toxicity of CPE, a modified protoxin was constructed with a tethered ligand attached to the C-terminus connected by a flexible linker containing a PSA-specific protease cleavage site. This engineered protoxin selectively and efficiently lyses PSA-producing prostate cancer cells whereas CLDN3 and CLDN4 positive cells that do not express PSA are resistant to cytolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2014.06.009DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
cancer cells
16
claudin claudin
12
clostridium perfringens
8
protoxin selectively
8
psa-producing prostate
8
cells
6
claudin
5
prostate
5
cancer
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!