African origin and europe-mediated global dispersal of the cyanobacterium Microcystis aeruginosa.

Curr Microbiol

CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, 4050-123, Porto, Portugal.

Published: November 2014

Microcystis aeruginosa is a bloom-forming cyanobacteria, which currently has a cosmopolitan distribution. Since M. aeruginosa can produce toxic compounds across all continents that it inhabits, it is of major public health relevance to assess its origin and dispersal. Thus, we conducted a worldwide study using 29 isolates representative of all the main continents, and used a concatenated genetic system for phylogenetic analyses consisting of four genetic markers (spanning ca. 3,485 bp). Our results support an early origin of M. aeruginosa in the African continent, with a subsequent dispersal to establish a second genetic pool in the European continent, from where M. aeruginosa then colonized the remaining continental regions. Our findings indicate that the European population has a cosmopolitan distribution, and is genetically closer to populations from Africa and North America. Our study also highlights the utility of using a concatenated dataset for phylogenetic inferences in cyanobacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-014-0628-2DOI Listing

Publication Analysis

Top Keywords

microcystis aeruginosa
8
cosmopolitan distribution
8
aeruginosa
5
african origin
4
origin europe-mediated
4
europe-mediated global
4
global dispersal
4
dispersal cyanobacterium
4
cyanobacterium microcystis
4
aeruginosa microcystis
4

Similar Publications

Changes in population fitness and gene co-expression networks reveal the boosted impact of toxic cyanobacteria on Daphnia magna through microplastic exposure.

J Hazard Mater

January 2025

Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China. Electronic address:

The concomitant prevalence of toxic cyanobacteria blooms and plastic pollution in aquatic ecosystems is emerging as a pressing global water pollution dilemma. While toxic cyanobacteria and microplastics (MPs) can each independently exert significant impacts on aquatic biota, the magnitude and trajectory of the combined interactions remains rudimentary. In this study, we evaluated how MPs influences cyanobacterial stress on keystone grazer Daphnia, focusing on population, individual, biochemical and toxicogenomic signatures.

View Article and Find Full Text PDF

Photochemical regulation of microcystin synthesis and release in cyanobacteria Microcystis aeruginosa by triplet state dissolved organic matter.

Sci Total Environ

January 2025

College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China. Electronic address:

The increasing frequency of cyanobacterial blooms, particularly those induced by Microcystis aeruginosa (M. aeruginosa), poses severe economic, ecological and health challenges due to the production of microcystins (MCs). Environmental parameters such as light and nutrient availability influence MCs production, while the role of dissolved organic matter (DOM) photochemical processes in regulating these remains unclear.

View Article and Find Full Text PDF

Long-term suppression of Microcystis aeruginosa by tannic acid: Risks of microcystin pollution and proteomic mechanisms.

J Hazard Mater

January 2025

School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China. Electronic address:

Harmful algal blooms are a critical eco-environmental issue with severe impacts on aquatic ecosystems and human health. Tannic acid (TA) has been suggested as an effective algal bloom control, but the molecular mechanisms of its interaction with algae cells and its effects on algal toxin release remain unclear. This study tracked toxin production and release in the toxigenic species Microcystis aeruginosa (M.

View Article and Find Full Text PDF

Removal of cyanobacterial harmful algal blooms (HABs) from contaminated local park lake using mycelial pellets.

Heliyon

January 2025

Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.

Eutrophication and hypereutrophication in lakes foster harmful blue-green algal blooms, which pose a significant threat to the ecological health of freshwater reservoirs. This study investigated the effectiveness of the bio-flocculation approach using the fungus strain BGF4A1 to remove these harmful blooms, specifically targeting cyanobacterial species like PCC-7914. Key flocculation parameters, cyanobacterial concentrations, adsorption kinetics, and pellet morphology were explored in this research.

View Article and Find Full Text PDF

Evaluation of the actinia-shaped composite coagulant for removal of algae in water: Role of charge density.

J Hazard Mater

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China. Electronic address:

A series of novel cationic modified actinia-shaped composite coagulant (AMS-C), with similar tentacle length and distribution but different charge density (CD), was successfully designed and fabricated by combination of a cationic graft starch and attapulgite (ATP). AMS-C shows a high efficiency in coagulative removal of Microcystis aeruginosa from water over a wide pH range. The algae-harvesting efficiency of optimized AMS-C can reach to 92.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!