Variable t-tubule organization and Ca2+ homeostasis across the atria.

Am J Physiol Heart Circ Physiol

Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway;

Published: August 2014

Although t-tubules have traditionally been thought to be absent in atrial cardiomyocytes, recent studies have suggested that t-tubules exist in the atria of large mammals. However, it is unclear whether regional differences in t-tubule organization exist that define cardiomyocyte function across the atria. We sought to investigate regional t-tubule density in pig and rat atria and the consequences for cardiomyocyte Ca(2+) homeostasis. We observed t-tubules in approximately one-third of rat atrial cardiomyocytes, in both tissue cryosections and isolated cardiomyocytes. In a minority (≈10%) of atrial cardiomyocytes, the t-tubular network was well organized, with a transverse structure resembling that of ventricular cardiomyocytes. In both rat and pig atrial tissue, we observed higher t-tubule density in the epicardium than in the endocardium. Consistent with high variability in the distribution of t-tubules and Ca(2+) channels among cells, L-type Ca(2+) current amplitude was also highly variable and steeply dependent on capacitance and t-tubule density. Accordingly, Ca(2+) transients showed great variability in Ca(2+) release synchrony. Simultaneous imaging of the cell membrane and Ca(2+) transients confirmed t-tubule functionality. Results from mathematical modeling indicated that a transmural gradient in t-tubule organization and Ca(2+) release kinetics supports synchronization of contraction across the atrial wall and may underlie transmural differences in the refractory period. In conclusion, our results indicate that t-tubule density is highly variable across the atria. We propose that higher t-tubule density in cells localized in the epicardium may promote synchronization of contraction across the atrial wall.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00295.2014DOI Listing

Publication Analysis

Top Keywords

t-tubule density
20
t-tubule organization
12
atrial cardiomyocytes
12
ca2+
8
organization ca2+
8
ca2+ homeostasis
8
t-tubule
8
higher t-tubule
8
highly variable
8
ca2+ transients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!