ERM proteins at a glance.

J Cell Sci

Massachusetts General Hospital Center for Cancer Research, Harvard Medical School Department of Pathology, 149 13th Street, Charlestown, MA 02129, USA

Published: August 2014

The cell cortex is a dynamic and heterogeneous structure that governs cell identity and behavior. The ERM proteins (ezrin, radixin and moesin) are major architects of the cell cortex, and they link plasma membrane phospholipids and proteins to the underlying cortical actin cytoskeleton. Recent studies in several model systems have uncovered surprisingly dynamic and complex molecular activities of the ERM proteins and have provided new mechanistic insight into how they build and maintain cortical domains. Among many well-established and essential functions of ERM proteins, this Cell Science at a Glance article and accompanying poster will focus on the role of ERMs in organizing the cell cortex during cell division and apical morphogenesis. These examples highlight an emerging appreciation that the ERM proteins both locally alter the mechanical properties of the cell cortex, and control the spatial distribution and activity of key membrane complexes, establishing the ERM proteins as a nexus for the physical and functional organization of the cell cortex and making it clear that they are much more than scaffolds. This article is part of a Minifocus on Establishing polarity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117225PMC
http://dx.doi.org/10.1242/jcs.098343DOI Listing

Publication Analysis

Top Keywords

erm proteins
24
cell cortex
20
cell
8
erm
6
proteins
6
cortex
5
proteins glance
4
glance cell
4
cortex dynamic
4
dynamic heterogeneous
4

Similar Publications

Hair cell (HC) loss, frequently induced by ototoxic agents such as gentamicin, leads to irreversible hearing loss. Because of the restricted regenerative capabilities of the mammalian inner ear, the exploration of therapeutic strategies to restore damaged HCs is critically needed. Recombinant human Neuritin (rhNeuritin), a neurotrophic factor with established roles in promoting cell survival and regeneration across various systems, presents itself as a promising therapeutic candidate for HC repair.

View Article and Find Full Text PDF

Yersinia ruckeri is known to cause enteric red mouth disease (ERM) in channel catfish (Ictalurus punctatus). This study established a model of Y. ruckeri-induced intestinal inflammation in channel catfish.

View Article and Find Full Text PDF

Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb.

View Article and Find Full Text PDF

Streptococcus suis (S. suis) is a major pathogen for pigs, causing large economic losses to the swine industry. Moreover, this bacterium has a zoonotic potential, being capable of infecting humans in close contact with pigs or, less frequently, through contact with pork products.

View Article and Find Full Text PDF

Background/objectives: Due to a narrow therapeutic window, side-effects, toxicities, and individual pharmacokinetics (PK) variability, WHO classifies vancomycin (VCM) as a "watch antibiotic" whose use should be monitored to improve clinical effectiveness. Availability and ease of use have made the immunoassay technique the basic tool for the therapeutic drug monitoring (TDM) of VCM concentrations.

Methods: The present study describes the development of a TDM tool for VCM based on anti-eremomycin (ERM) antibody enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!