Biodegradation of composite resin with ester linkages: identifying human salivary enzyme activity with a potential role in the esterolytic process.

Dent Mater

Faculty of Dentistry, University of Toronto, ON, Canada; Institute of Biomedical and Biomaterials Engineering, University of Toronto, ON, Canada; Materials Science Engineering, University of Toronto, ON, Canada. Electronic address:

Published: August 2014

Objectives: The ester linkages contained within dental resin monomers (such as Bisphenol A-glycidylmethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA)) are susceptible to hydrolytic degradation by salivary esterases, however very little is known about the specific esterase activities implicated in this process. The objective of this work was to isolate and identify the dominant proteins from saliva that are associated with the esterase activities shown to be involved in the degradation of BisGMA.

Methods: Human whole saliva was collected and processed prior to separation in a HiPrep 16/60 Sephacryl S-200 HR column. The fraction with the highest esterase activity was further separated by an anion exchange column (Mono-Q (10/100G)). Isolated fractions were then separated by gel electrophoresis, and compared to a common bench marker esterase, cholesterol esterase (CE), and commercial albumin which has been reported to express esterase activity. Proteins suspected of containing esterase activity were analyzed by Mass Spectroscopy (MS). Commercially available proteins, similar to the salivary esterase proteins identified by MS, were used to replicate the enzymatic complexes and confirm their degradation activity with respect to BisGMA.

Results: MS data suggested that the enzyme fraction with the highest esterase activity was contained among a group of proteins consisting of albumin, Zn-α2-glycoprotein, α-amylase, TALDO1 protein, transferrin, lipocalin2, and prolactin-induced protein. Studies concluded that the main esterase bands on the gels in each fraction did not overlap with CE activity, and that albumin activity emerged as a lead candidate with significant esterase activity relative to BisGMA degradation, particularly when it formed a complex with Zn-α2-glycoprotein, under slightly basic conditions.

Significance: These enzyme complexes can be used as a physiologically relevant formulation to test the biostability of composite resins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2014.05.031DOI Listing

Publication Analysis

Top Keywords

esterase activity
20
esterase
11
activity
9
ester linkages
8
esterase activities
8
fraction highest
8
highest esterase
8
proteins
5
biodegradation composite
4
composite resin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!