Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: 3-Hydroxy-3-methyl-glutaryl CoA (HMG-CoA) reductase inhibitors or statins are competitive inhibitors of the rate-limiting enzyme in cholesterol biosynthesis. Currently, statins are used as first-line therapy in the treatment of diabetic dyslipidemia. However, effects of statins on β cell function remains unclear. This study aims to examine effects of atorvastatin treatment on pancreatic β cell function in obese C57BL/6 J mice and the possible mechanisms.
Methods: Diet-induced obesity (DIO) C57BL/6 J mice were treated with atorvastatin (30 mg/kg/day) for 58 days. β cell function was assessed by hyperglycemic clamp and the area of insulin-positive β cells was examined by immunofluorescence. Gene expression was assessed by RT-PCR, and endoplasmic reticulum (ER) stress related proteins were examined by Western blot. Additionally, cell viability and apoptosis of the cholesterol-loaded NIT-1 cells were investigated after atorvastatin treatment.
Results: Hyperglycemic clamp study revealed that glucose infusion rate (GIR) and insulin stimulation ratio in atorvastatin-treated DIO mice were markedly higher than control mice (P < 0.05, P < 0.01 vs. con), indicating preserved β-cell sensitivity to glucose. Lipid profiles of plasma triglyceride (TG), pancreas TG and plasma cholesterol (CHO) were improved. Pancreas weight and weight index were improved significantly after atorvastatin treatment (P < 0.05 vs. con). Immunofluorescence results showed that atorvastatin-treated mice had significantly larger insulin-positive β cell area (P < 0.05 vs. con). Furthermore, RT-PCR and western blot showed that the mRNA and protein expression of pancreatic and duodenal homeobox 1 (Pdx1) in the pancreas were upregulated (P < 0.001, P < 0.01 vs. con). Moreover, the expression level of ER stress markers of activating transcription factor 4 (ATF4), CCAAT-enhancer-binding protein homologous protein (CHOP) and phosphorylated eukaryotic initiation factor 2α (eIF2α) were downregulated in the pancreas of atorvastatin-treated mice (P < 0.001, P < 0.01, P < 0.01 vs. con). Besides, atorvastatin protected the pancreatic β cell line of NIT-1 from cholesterol-induced apoptosis. Western blot showed increased expression of anti-apoptotic protein of B-cell lymphoma 2 (Bcl-2).
Conclusion: Pancreatic β cell function of obese C57BL/6 J mice was preserved after atorvastatin treatment, and this improvement may be attributed to enhanced pancreas proliferation and amelioration of pancreatic ER stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078942 | PMC |
http://dx.doi.org/10.1186/1476-511X-13-98 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!