Single-molecule approaches to chemical reaction analysis can provide information that is not accessible by studying ensemble systems. Changes in the molecular structures of compounds tethered to the inner wall of a protein pore are known to affect the current carried through the pore by aqueous ions under a fixed applied potential. Here, we use this approach to study the substitution reactions of arsenic(III) compounds with thiols, stretching the limits of the protein pore technology to track the interconversion of seven reaction components in a network that comprises interconnected Walden cycles. Single-molecule pathway analysis of 'allowed' and 'forbidden' reactions reveals that sulfur-sulfur substitution occurs with stereochemical inversion at the arsenic centre. Hence, we demonstrate that the nanoreactor approach can be a valuable technique for the analysis of dynamic reaction systems of relevance to biology.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nchem.1949DOI Listing

Publication Analysis

Top Keywords

protein pore
8
single-molecule analysis
4
analysis chirality
4
chirality multicomponent
4
reaction
4
multicomponent reaction
4
reaction network
4
network single-molecule
4
single-molecule approaches
4
approaches chemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!