N-Acyl Chain in Ceramide and Sphingomyelin Determines Their Mixing Behavior, Phase State, and Surface Topography in Langmuir Films.

J Phys Chem B

Centro de Investigaciones en Química Biológica de Córdoba CIQUIBIC-CONICET/UNC, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba . Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.

Published: July 2014

Sphingolipids are membrane lipids composed by a long chain aminediol base, usually sphingosine, with a N-linked fatty acyl chain whose quality depends on the membrane type. The effect of length and unsaturation of the N-acyl chain on the mixing behavior of different sphingolipids has scarcely been studied, and in this work this issue is addressed employing Langmuir monolayers at the air-water interface, in order to assess the surface mixing in binary mixtures of different species of sphingomyelins and ceramides. The dependence on the monolayer composition of the mean molecular area, perpendicular dipole moment, domain segregation, and surface topography, as well as the film elasticity and optical thickness were studied. The results indicate that composition-dependent favorable interactions among sphingomyelin and ceramide occur as a consequence of complementary lateral packing and increased acyl chain ordering; the phase state of the components appears as a major factor determining miscibility among sphingomyelins and ceramides even in cases where the lipids have a considerable hydrocarbon chain length mismatch.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp501686qDOI Listing

Publication Analysis

Top Keywords

n-acyl chain
8
mixing behavior
8
phase state
8
surface topography
8
acyl chain
8
sphingomyelins ceramides
8
chain
5
chain ceramide
4
ceramide sphingomyelin
4
sphingomyelin determines
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!