Impact of lithium treatment on FGF-23 serum concentrations in depressive patients.

J Clin Psychopharmacol

Department of Physiology University of Tübingen Tübingen, Germany Department of Psychiatry and Psychotherapy Charité University Medicine Berlin Campus Mitte Berlin, Germany Department of Physiology University of Tübingen Tübingen, Germany University Psychiatric Clinics University of Basel Basel, Switzerland Department of Physiology University of Tübingen Tübingen, Germany University Psychiatric Clinics University of Basel Basel, Switzerland University Psychiatric Clinics University of Basel Basel, Switzerland.

Published: December 2014

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676336PMC
http://dx.doi.org/10.1097/JCP.0000000000000163DOI Listing

Publication Analysis

Top Keywords

impact lithium
4
lithium treatment
4
treatment fgf-23
4
fgf-23 serum
4
serum concentrations
4
concentrations depressive
4
depressive patients
4
impact
1
treatment
1
fgf-23
1

Similar Publications

Introduction: Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may be hippocampal-dependent and may be attenuated in lithium responders. Induced pluripotent stem cell-derived CA3 pyramidal cell-like neurons show significant hyperexcitability in lithium-responsive BD patients, while lithium nonresponders show marked variance in hyperexcitability. We hypothesize that this variable excitability will impair episodic memory recall, as assessed by cued retrieval (pattern completion) within a computational model of the hippocampal CA3.

View Article and Find Full Text PDF

The efficient functioning of dye-sensitized solar cells (DSSCs) is governed by the interplay of three essential components: the semiconductor, the dye, and the electrolyte. While the impact of the electrolyte composition on the device's performance has been extensively studied in n-type DSSCs, much less is known about p-type-based devices. Here, we investigate the effect of potential-determining ions on the energetics and stability of dye-sensitized NiO surfaces by using electrochemical, ab initio molecular dynamics simulations, and ab initio electronic structure calculations.

View Article and Find Full Text PDF

This study numerically investigates the impact of different loading modes on the biomechanical response of an osseointegrated dental implant. While finite element modeling is commonly employed to investigate the mechanical behavior of dental implants, several models lack physiological accuracy in their loading conditions, omitting occlusal contact points that influence stress distribution in periimplant bone. Using 3D finite element modeling and analysis, stress distributions at the bone-implant interface are evaluated under both physiological loading, incorporating natural occlusal contact points, and non-physiological loading conditions, with a focus on load transmission mechanisms and the potential risk of bone overloading.

View Article and Find Full Text PDF

Co single-atom catalyst on ordered macro-microporous structure as separator for Li-S battery.

J Colloid Interface Sci

January 2025

State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. Electronic address:

Lithium-sulfur (Li-S) batteries have attracted significant attention due to their high theoretical energy density, low cost and environmental friendliness, which are considered one of the most promising candidates for next-generation energy storage devices. However, the sluggish kinetics associated with sulfur oxidation-reduction reactions and the detrimental shuttle effect caused by lithium polysulfides (LiPSs) significantly impacts the electrochemical performance of Li-S batteries. In this work, Co single-atom catalyst (Co-NC) on an ordered macro-microporous structure are designed, and the catalyst are coated onto 2325 separator.

View Article and Find Full Text PDF

Impact of electric vehicle battery recycling on reducing raw material demand and battery life-cycle carbon emissions in China.

Sci Rep

January 2025

Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, Guangdong Province, People's Republic of China.

The rapid growth of electric vehicles (EVs) in China challenges raw material demand. This study evaluates the impact of recycling and reusing EV batteries on reducing material demand and carbon emissions. Integrating a national-level vehicle stock turnover model with life-cycle carbon emission assessment, we found that replacing nickel-cobalt-manganese batteries with lithium iron phosphate batteries with battery recycling can reduce lithium, cobalt, and nickel demand between 2021 and 2060 by up to 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!