Vaccination is believed to be the most effective method for the prevention of infectious diseases. Thus it is imperative to develop cost effective and scalable process for the production of vaccines so as to make them affordable for mass use. In this study, performance of a novel disposable iCELLis fixed bed bioreactor system was investigated for the production of some viral vaccines like Rabies, Hepatitis-A and Chikungunya vaccines in comparison to conventional systems like the commercially available packed bed system and roller bottle system. Vero and MRC-5 cell substrates were evaluated for growth parameters in all the three systems maintaining similar seeding density, multiplicity of infection (MOI) and media components. It was observed that Vero cells showed similar growth in all the three bioreactors whereas MRC-5 cells showed better growth in iCELLis Nano system and roller bottle system. Subsequently, the virus infection and antigen production studies also revealed that for Hepatitis-A and Chikungunya iCELLis Nano bioreactor system was better to the commercial packed bed bioreactor and roller bottle systems. Although for rabies antigen production commercially available packed bed bioreactor system was found to be better. This study shows that different bioreactor platforms may be employed for viral vaccine production and iCELLis Nano is one of such new convenient and a stable platform for production of human viral vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052670 | PMC |
http://dx.doi.org/10.1186/s13568-014-0025-z | DOI Listing |
Materials (Basel)
December 2024
Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa S/N, 15782 Santiago de Compostela, Spain.
The present work analyzes the behavior of an activated carbon fabricated from almond shells for the removal of cationic dyes (methylene blue, MB, and malachite green, MG) by adsorption from aqueous solutions. The carbonized precursor was activated with KOH at a 1:2 (/) ratio with the objective of increasing both the surface area and the pore volume. Both non-activated and activated carbon were characterized in different aspects of interest in dye adsorption studies (surface structure, point of zero charge, specific surface area, and pore size distribution).
View Article and Find Full Text PDFACS ES T Eng
October 2024
School of Sustainable Engineering & the Built Environment, Arizona State University, Tempe, Arizona 85287, United States of America.
The sulfur-containing chemical warfare agents sulfur mustard HD and nerve agent VX are highly toxic and persistent in the environment. Therefore, their neutralisation requires harsh oxidation conditions, but also precise selectivity. Here we report the safe and effective detoxification of surrogates CEES and PhX by selective oxidation of the sulfur atom by generating peracetic acid from AcOEt and aq.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nuclear and Renewable Energy Sources, Ural Federal University, Yekaterinburg, 620002, Russia.
The present investigation assessed the viability of utilizing a powdered clam shell in continuous adsorption to eliminate nickel ions from simulated wastewater. The breakthrough curves (BTC) were analyzed by altering the Q (inlet flow rate) in a glass column (ID 5 cm, H 35 cm) with a multi-port and filled with the powdered clamshell adsorbent (PCSA). The PCSA's nickel adsorption efficiency was maximum (87.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!