Phytochrome B Nuclear Bodies Respond to the Low Red to Far-Red Ratio and to the Reduced Irradiance of Canopy Shade in Arabidopsis.

Plant Physiol

Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, and Consejo Nacional de Investigaciones Científicas y Técnicas, 1417 Buenos Aires, Argentina (S.A.T., A.S.B., M.B.T.R., J.J.C.); andFundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina (M.L., J.J.C.)

Published: August 2014

The current consensus is that plant responses to canopy shade involve the perception of low red to far-red ratios (R:FRs) by phytochrome B (phyB), which leads to the direct activation of auxin synthesis genes by PHYTOCHROME INTERACTING FACTORs (PIFs). In addition to its effect on R:FRs, shade also reduces irradiance, but whether shade-induced drops in irradiance affect phyB activity has not been demonstrated. To address this issue, we investigated whether irradiance and R:FRs have similar effects on the nuclear distribution of phyB in petiole cells of light-grown plants. Under high-irradiance white light, phyB formed large nuclear bodies. Lowering irradiance without changing R:FRs or lowering R:FRs by adding far-red light led to the appearance of small nuclear bodies containing phyB. Large nuclear bodies remained but with some concomitant reduction in diameter. The appearance of small nuclear bodies was rapid, stable, and reversible upon the return to high irradiance and high R:FRs. High levels of red light but not of blue light were enough to restrain the formation of small phyB nuclear bodies. Irradiance was effective within the range found in natural canopies and even under relatively low R:FRs. The promotion of leaf hyponasty by lowering irradiance was impaired in phyB and pif mutants, as previously reported for the response to R:FRs. The expression of auxin-related genes showed a similar hierarchy of response to low R:FRs and low irradiance. We propose that phyB is able to perceive not only the low R:FRs, but also the low irradiance of shade.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119049PMC
http://dx.doi.org/10.1104/pp.114.242438DOI Listing

Publication Analysis

Top Keywords

nuclear bodies
24
low rfrs
12
irradiance
10
rfrs
10
low red
8
red far-red
8
canopy shade
8
phyb
8
large nuclear
8
lowering irradiance
8

Similar Publications

Decades after their initial observation in prion-infected brain tissues, the identities of virus-like dense particles, varicose tubules, and oval bodies containing parallel bands and fibrils have remained elusive. Our recent work revealed that a phenotype of dilation of the endoplasmic reticulum (ER), most notable for the perinuclear space (PNS), contributes to spongiform degeneration. To assess the significance of this phenotype for the etiology of prion diseases, we explored whether it can be functionally linked to other neuropathological hallmarks observed in these diseases, as this would indicate it to be a central event.

View Article and Find Full Text PDF

Introduction: In the rapidly advancing field of 'omics research, there is an increasing demand for sophisticated bioinformatic tools to enable efficient and consistent data analysis. As biological datasets, particularly metabolomics, become larger and more complex, innovative strategies are essential for deciphering the intricate molecular and cellular networks.

Methods: We introduce a pioneering analytical approach that combines Principal Component Analysis (PCA) with Graphical Lasso (GLASSO).

View Article and Find Full Text PDF

Background: Technological advancements in artificial intelligence (AI) are redefining cardiac imaging by providing advanced tools for analyzing complex health data. AI is increasingly applied across various imaging modalities, including echocardiography, magnetic resonance imaging (MRI), computed tomography (CT), and nuclear imaging, to enhance diagnostic workflows and improve patient outcomes.

Hypothesis: Integrating AI into cardiac imaging enhances image quality, accelerates processing times, and improves diagnostic accuracy, enabling timely and personalized interventions that lead to better health outcomes.

View Article and Find Full Text PDF

Mild behavioral impairment and its relation to amyloid load in isolated REM sleep behavior disorder.

Parkinsonism Relat Disord

January 2025

Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea. Electronic address:

Introduction: In isolated REM sleep behavior disorder (iRBD), the evidence of cognitive impairment and co-existing amyloid pathology suggests that mild behavioral impairment (MBI) may be associated with disease progression. In this study, we investigated MBI and its association with cognitive function, brain amyloid load and glucose metabolism in iRBD patients to evaluate the utility of MBI as a predictive marker of disease progression.

Methods: Patients with iRBD underwent a neuropsychological evaluation, F-florbetaben (FBB) PET, and F-fluorodeoxyglucose (FDG) PET.

View Article and Find Full Text PDF

Daily contact with considerable amounts of polystyrene nanoparticles (PSNPs) may cause harmful effects on the living organisms, through mechanisms that are not fully understood. The study aimed to evaluate the cytotoxic and genotoxic effects of PSNPs (size 200 nm and 40 nm) in mesenchymal stem cells (MSCs). In order to estimate cellular uptake and retention of nanoplastics, PSNP-treated cells have been analyzed by transmission electron microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!