An electronic quantum eraser.

Science

Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel.

Published: June 2014

The quantum eraser is a device that illustrates the quantum principle of complementarity and shows how a dephased system can regain its lost quantum behavior by erasing the "which-path" information already obtained about it. Thus far, quantum erasers were constructed predominantly in optical systems. Here, we present a realization of a quantum eraser in a mesoscopic electronic device. The use of interacting electrons, instead of noninteracting photons, allows control over the extracted information and a smooth variation of the degree of quantum erasure. The demonstrated system can serve as a first step toward a variety of more complex setups.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1248459DOI Listing

Publication Analysis

Top Keywords

quantum eraser
12
quantum
6
electronic quantum
4
eraser quantum
4
eraser device
4
device illustrates
4
illustrates quantum
4
quantum principle
4
principle complementarity
4
complementarity dephased
4

Similar Publications

NiO nanoparticles (NPs) synthesized using glancing angle deposition (GLAD) technique over MgZnO thin film was used to design a novel memory device. The NiO NPs with average diameter ~ 9.5 nm was uniformly distributed over the MgZnO thin film surface.

View Article and Find Full Text PDF

Anti-CRISPR proteins in Gluconobacter oxydans inactivate FnCas12a by acetylation.

Int J Biol Macromol

January 2025

Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China. Electronic address:

Gluconobacter oxydans is an important chassis cell for one-step production of vitamin C. Previous studies reported that CRISPR/Cas12a is naturally inactivated in G. oxydans, but the specific mechanism remains unclear.

View Article and Find Full Text PDF

Acoustic noise is known to perturb reading for good readers, including children and adults. This external acoustic noise interfering at the multimodal areas in the brain causes difficulties reducing reading and writing performances. Moreover, it is known that people with developmental coordination disorder (DCD) and dyslexia have reading deficits even in the absence of acoustic noise.

View Article and Find Full Text PDF

A Reconfigurable Polarimetric Photodetector Based on the MoS/PdSe Heterostructure with a Charge-Trap Gate Stack.

Nanomaterials (Basel)

December 2024

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Besides the intensity and wavelength, the ability to analyze the optical polarization of detected light can provide a new degree of freedom for numerous applications, such as object recognition, biomedical applications, environmental monitoring, and remote sensing imaging. However, conventional filter-integrated polarimetric sensing systems require complex optical components and a complicated fabrication process, severely limiting their on-chip miniaturization and functionalities. Herein, the reconfigurable polarimetric photodetection with photovoltaic mode is developed based on a few-layer MoS/PdSe heterostructure channel and a charge-trap structure composed of AlO/HfO/AlO (AHA)-stacked dielectrics.

View Article and Find Full Text PDF

All-visible light-activated diarylethene (DAE) photoswitches are highly attractive for applications in smart photoresponsive materials. The photocyclization of DAE the low-lying excited triplet state through triplet energy transfer (TET) from a sensitizer has been proven to be an effective approach for the realization of this scheme. However, the TET process is sensitive to oxygen and typically requires more than one sensitizer per photoswitch to facilitate sensitized photocyclization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!