A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single-voxel MRS at 3T. | LitMetric

Purpose: To determine whether neurochemical concentrations obtained at two MRI sites using clinical 3T scanners can be pooled when a highly optimized, nonvendor short-echo, single-voxel proton MRS pulse sequence is used in conjunction with identical calibration and quantification procedures.

Methods: A modified semi-LASER sequence (TE = 28 ms) was used to acquire spectra from two brain regions (cerebellar vermis and pons) on two Siemens 3T scanners using the same B0 and B1 calibration protocols from two different cohorts of healthy volunteers (N = 24-33 per site) matched for age and body mass index. Spectra were quantified with LCModel using water scaling.

Results: The spectral quality was very consistent between the two sites and allowed reliable quantification of at least 13 metabolites in the vermis and pons compared with 3-5 metabolites in prior multisite magnetic resonance spectroscopy trials using vendor-provided sequences. The neurochemical profiles were nearly identical at the two sites and showed the feasibility to detect interindividual differences in the healthy brain.

Conclusion: Highly reproducible neurochemical profiles can be obtained on different clinical 3T scanners at different sites, provided that the same, optimized acquisition and analysis techniques are used. This will allow pooling of multisite data in clinical studies, which is particularly critical for rare neurological diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272339PMC
http://dx.doi.org/10.1002/mrm.25295DOI Listing

Publication Analysis

Top Keywords

neurochemical profiles
12
short-echo single-voxel
8
clinical scanners
8
vermis pons
8
two-site reproducibility
4
reproducibility cerebellar
4
cerebellar brainstem
4
neurochemical
4
brainstem neurochemical
4
profiles short-echo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!