Introduction: Classification methods have been proposed to detect Alzheimer’s disease (AD) using magnetic resonance images. Most rely on features such as the shape/volume of brain structures that need to be defined a priori. In this work, we propose a method that does not require either the segmentation of specific brain regions or the nonlinear alignment to a template. Besides classification, we also analyze which brain regions are discriminative between a group of normal controls and a group of AD patients.
Methods: We perform 3D texture analysis using Local Binary Patterns computed at local image patches in the whole brain, combined in a classifier ensemble.We evaluate our method in a publicly available database including very mild-to-mild AD subjects and healthy elderly controls.
Results: For the subject cohort including only mild AD subjects, the best results are obtained using a combination of large (30×30×30 and 40×40×40 voxels) patches. A spatial analysis on the best performing patches shows that these are located in the medial-temporal lobe and in the periventricular regions. When very mild AD subjects are included in the dataset, the small (10×10×10 voxels) patches perform best, with the most discriminative ones being located near the left hippocampus.
Conclusion: We show that our method is able not only to perform accurate classification, but also to localize dis-criminative brain regions, which are in accordance with the medical literature. This is achieved without the need to segment-specific brain structures and without performing nonlinear registration to a template, indicating that the method may be suitable for a clinical implementation that can help to diagnose AD at an earlier stage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00234-014-1385-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!