In this work, phenylboronic acid (PBA) was thoroughly investigated as a synthetic ligand for the purification of an immunoglobulin G (IgG) from a clarified cell supernatant from Chinese Hamster Ovary (CHO) cell cultures. In particular, the study was focused on the development of a washing step and in the optimization of the elution step using a serum containing supernatant. From the different conditions tested, best recoveries - 99% - and purifications - protein purity of 81% and a purification factor of 16 out of a maximum of 20 - were achieved using 100mM d-sorbitol in 10mM Tris-HCl as washing buffer and 0.5M d-sorbitol with 150mM NaCl in 10mM Tris-HCl as elution buffer. The purification outcome was also compared with protein A chromatography that revealed a recovery of 99%, 87% protein purity and 29 out of a maximum of 33 purification factor. Following the main purification, purified IgG was characterized in terms of isoelectric point, size and activity. In the end, a proof of concept was performed using two different mAbs from serum-free CHO cell cultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2014.06.001 | DOI Listing |
Chem Asian J
January 2025
Huazhong University of Science and Technology, School of Chemisry & Chemical Engineering, 1037 Luoyu Road, 430074, Wuhan, CHINA.
Using a direct knitting strategy, we successfully prepared a novel heterogeneous catalyst consisting of pyridine-bridged bis(imidazolium-2-ylidene) palladium complexes (CNC-Pd) embedded in a knitted network polymer. The resulting catalysts (HCP-CNC-Pd-d) exhibited high specific surface areas of 982 m2 g-1 with microporous and mesoporous structures. The large surface area enhances contact between the substrate and the catalytic center, while the strong chelation between CNC and the metal ion ensures the catalyst's durability.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China.
Significant progress has been made in the development of potential therapies for diseases associated with inflammation and oxidative stress. Nevertheless, the availability of effective clinical treatments remains limited. Herein, we introduce a novel silk-based bioactive material, TPSF, developed by sequentially conjugating Tempol and phenylboronic acid pinacol ester to silk fibroin.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, China; Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan 430000, China. Electronic address:
Functional injectable hydrogel (IH) is promising for infected bone defects (IBDs) repair, but how to endow it with desired antibacterial/immunoregulatory functions as well as avoid mechanical failures during its manipulation has posed as main challenges. Herein, rosmarinic acid (RosA), a natural product with antibacterial/immunoregulatory activities, was utilized to develop a FCR IH through forming phenylboronic acid ester bonds with 4-formylphenyl phenylboronic acid (4-FPBA) grafted chitosan (CS) (FC). After being applied to the IBD site, the FCR IH was then injected with tobramycin (Tob) solution, another alkaline antibacterial drug, to induce in situ crystallization of the FC, endowing the resultant FCRT hydrogel with adaptively enhanced mechanical strength and structural stability.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, PR China. Electronic address:
In this paper, a pH-sensitive chitosan-grafted phenylboronic acid (CS-BA)/polyvinyl alcohol (PVA) hydrogel was constructed based on dynamic borate bonding for loading chemotherapeutic drug cisplatin (CDDP) and divalent Cu (CS-BA/PVA-Cu-CDDP). The hydrogel can respond and degrade specifically in the simulative acidic tumor microenvironment (TME), and the released Cu can deplete glutathione (GSH) in tumor cells and generate Cu. It is worth noting that, Cu can further catalyze the Fenton-like reaction to generate cancer cell-toxic hydroxyl radicals (OH•).
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!