Hypoxia-inducible factor (HIF)-1 is the key transcriptional activator mediating both adaptive and pathological responses to hypoxia. The purpose of this study was to find the role of HIF-1 in regulating neprilysin (NEP) at the early stage of hypoxia and explore the underlying mechanism. In this study, we demonstrated that both NEP mRNA and protein levels in neuroblastoma cells were elevated in early stages of hypoxia. Over-expression of HIF-1α gene increased NEP mRNA/protein levels, as well as enzyme activity while knockdown of HIF-1α decreased them. Meanwhile, HIF-1α was shown to bind to histone deacetylase (HDAC)-1 and reduced the association of HDAC-1 with NEP promoter, thus activating NEP gene transcription in a de-repression way. In summary, our results indicated that hypoxia in the early stages would up-regulate NEP expression, in which interaction of HIF-1α and HDAC-1 may play a role. This study suggested that NEP up-regulation might be an adaptive response to hypoxia, which was mediated by HIF-1α binding to HDAC-1 at the early stage of hypoxia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.12795 | DOI Listing |
Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.
Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.
Folia Morphol (Warsz)
January 2025
Department of Gynecology and Obstetrics, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
Background: Neuroblastoma often begins in infancy and one of the most common types of cancer among children is someone. Napabucasin (NP) (BBI608), a natural naphthoquinone emerging as a novel inhibitor of STAT3, has been found to effectively kill cancer stem-like tumor cells. On the other hand, the effect of Napabucasin on SH-SY5Y cells is currently unclear.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Baylor College of Medicine, Houston, TX, United States.
Natural killer T cells (NKTs) are a promising platform for cancer immunotherapy, but few genes involved in regulation of NKT therapeutic activity have been identified. To find regulators of NKT functional fitness, we developed a CRISPR/Cas9-based mutagenesis screen that employs a guide RNA (gRNA) library targeting 1,118 immune-related genes. Unmodified NKTs and NKTs expressing a GD2-specific chimeric antigen receptor (GD2.
View Article and Find Full Text PDFElife
January 2025
Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.
Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity.
View Article and Find Full Text PDFGen Physiol Biophys
January 2025
Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.
Senescence, a crucial yet paradoxical phenomenon in cellular biology, acts as a barrier against cancer progression while simultaneously promoting aging and age-related pathologies. This duality underlines the importance of precise monitoring of senescence response, especially with regard to the proposed use of drugs selectively removing senescent cells. In particular, little is known about the role of senescence in neurons and in neurodegenerative diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!