Identification of multiple small heat-shock protein genes in Plutella xylostella (L.) and their expression profiles in response to abiotic stresses.

Cell Stress Chaperones

Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi, China.

Published: January 2015

We identify and characterize 14 small heat-shock protein (sHSP) genes from the diamondback moth (DBM), Plutella xylostella (L.), a destructive pest. Phylogenetic analyses indicate that, except for sHSP18.8 and sHSP19.22, the other 12 DBM sHSPs belong to five known insect sHSP groups. Developmental expression analysis revealed that most sHSPs peaked in the pupal and adult stages. The transcripts of sHSPs display tissue specificity with two exhibiting constitutive expression in four tested tissues. Expression of sHSP18.8 in fourth instar larvae is not induced by the tested abiotic stressors, and unless sHSP21.8 is not sensitive to thermal stress, 12 sHSPs are significantly up-regulated. The messenger RNA (mRNA) levels of all sHSPs are reduced under oxidative stress. Food deprivation leads to significant down-regulation of three sHSPs. The majority of sHSPs show expression variation to various heavy metals, whereas mRNA abundances of sHSP22.1 and sHSP 28.9 are reduced by four heavy metals. The responses of sHSPs to indoxacarb and cantharidin are varied. Beta-cypermethrin and chlorfenapyr exposure results in an increase of 13 sHSP transcripts and a reduction of 12 sHSP transcripts, respectively. These results show that different sHSPs might play distinct roles in the development and regulation of physiological activities, as well as in response to various abiotic stresses of DBM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255244PMC
http://dx.doi.org/10.1007/s12192-014-0522-7DOI Listing

Publication Analysis

Top Keywords

shsps
9
small heat-shock
8
heat-shock protein
8
plutella xylostella
8
response abiotic
8
abiotic stresses
8
transcripts shsps
8
heavy metals
8
shsp transcripts
8
expression
5

Similar Publications

A microaerobically induced small heat shock protein contributes to / symbiosis and interacts with a wide range of bacteroid proteins.

Appl Environ Microbiol

December 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain.

During the establishment of the symbiosis with legume plants, rhizobia are exposed to hostile physical and chemical microenvironments to which adaptations are required. Stress response proteins including small heat shock proteins (sHSPs) were previously shown to be differentially regulated in bacteroids induced by bv. viciae UPM791 in different hosts.

View Article and Find Full Text PDF

Mechanism of small heat shock protein client sequestration and induced polydispersity.

bioRxiv

December 2024

Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland OR 97239, U.S.A.

Small heat shock proteins (sHSPs) act as first responders during cellular stress by recognizing and sequestering destabilized proteins (clients), preventing their aggregation and facilitating downstream refolding or degradation. This chaperone function is critically important to proteostasis, conserved across all kingdoms of life, and associated with various protein misfolding diseases in humans. Mechanistic insights into how sHSPs sequester destabilized clients have been limited due to the extreme molecular plasticity and client-induced polydispersity of sHSP/client complexes.

View Article and Find Full Text PDF

αB-crystallin is an archetypical member of the small heat shock proteins (sHSPs) vital for cellular proteostasis and mitigating protein misfolding diseases. Gaining insights into the principles defining their molecular organization and chaperone function have been hindered by intrinsic dynamic properties and limited high-resolution structural analysis. To disentangle the mechanistic underpinnings of these dynamical properties, we ablate a conserved IXI-motif located within the N-terminal (NT) domain of human αB-crystallin implicated in subunit exchange dynamics and client sequestration.

View Article and Find Full Text PDF

Small heat shock proteins as relevant biomarkers for anthropogenic stressors in earthworms.

Comp Biochem Physiol A Mol Integr Physiol

November 2024

Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, C/José Antonio Nováis 12, 28040 Madrid, Spain. Electronic address: https://twitter.com/martanovo.

Anthropogenic stressors in terrestrial ecosystems require focused research on adaptive responses in soil organisms such as Eisenia fetida, a model earthworm species. We analyzed the gene expression of five small heat shock proteins (sHSPs) in response to various stressors: heat stress (31 and 35 °C), desiccation (10 % and 20 % humidity), and chemical exposure (bisphenol A and endosulfan) under standard and elevated temperatures. Under moderate heat (31 °C), early upregulation of sHSP transcripts suggests their involvement in initial stress responses, possibly mitigating protein aggregation.

View Article and Find Full Text PDF

A TT1-SCE1 module integrates ubiquitination and SUMOylation to regulate heat tolerance in rice.

Mol Plant

December 2024

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China. Electronic address:

Article Synopsis
  • Heat stress significantly threatens grain yields, and the protein TT1 is crucial for rice's heat tolerance by regulating the 26S proteasome.
  • This study identifies SCE1, a SUMO-conjugating enzyme that interacts with TT1, as a negative regulator of heat tolerance, affecting sHSPs through ubiquitination.
  • Reducing SCE1 levels improves rice grain yield under heat stress by enhancing seed-setting rates and grain filling, indicating the TT1-SCE1 pathway's potential for enhancing crop heat tolerance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!