Probing the role of the actin cytoskeleton during regulated exocytosis by intravital microscopy.

Methods Mol Biol

Intracellular Membrane Trafficking Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. 303A, 20892-4340, Bethesda, MD, USA.

Published: January 2015

The actin cytoskeleton plays a fundamental role in controlling several steps during regulated exocytosis. Here, we describe a combination of procedures that are aimed at studying the dynamics and the mechanism of the actin cytoskeleton in the salivary glands of live rodents, a model for exocrine secretion. Our approach relies on intravital microscopy, an imaging technique that enables imaging biological events in live animals at a subcellular resolution, and it is complemented by the use of pharmacological agents and indirect immunofluorescence in the salivary tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699287PMC
http://dx.doi.org/10.1007/978-1-4939-0944-5_28DOI Listing

Publication Analysis

Top Keywords

actin cytoskeleton
12
regulated exocytosis
8
intravital microscopy
8
probing role
4
role actin
4
cytoskeleton regulated
4
exocytosis intravital
4
microscopy actin
4
cytoskeleton plays
4
plays fundamental
4

Similar Publications

Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface.

View Article and Find Full Text PDF

Background: CHRFAM7A is a human-restricted gene associated with neuropsychiatric and neurodegenerative disorders. The translated CHRFAM7A protein incorporates into the α7 nicotinic acetylcholine receptor (α7nAChR) leading to a hypomorphic receptor. Mechanistic insight from isogenic iPSC derived neuronal and mononuclear cells demonstrated that CHRFAM7A affects Ca signaling and activates small GTPase Rac1 leading to an actin cytoskeleton gain of function.

View Article and Find Full Text PDF

Background: Understanding the fundamental differences between the human and pre-human brain is a prerequisite for designing meaningful models and therapies for AD. Expressed CHRFAM7A, a human restricted gene with carrier frequency of 75% in the human population predicts profound translational significance.

Method: The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples (ROSMAP).

View Article and Find Full Text PDF

Auditory hair cells form precise and sensitive staircase-like actin protrusions known as stereocilia. These specialized microvilli detect deflections induced by sound through the activation of mechano-electrical transduction (MET) channels located at their tips. At rest, a small MET channel current results in a constant calcium influx which regulates the morphology of the actin cytoskeleton in the shorter 'transducing' stereocilia.

View Article and Find Full Text PDF

Actin instability alters red blood cell mechanics and Piezo1 channel activity.

Biomech Model Mechanobiol

January 2025

CNR Istituto Officina Dei Materiali, Area Science Park Basovizza, S.S. 14, Km 163,5, 34149, Trieste, Italy.

The organization and dynamics of the spectrin-actin membrane cytoskeleton play a crucial role in determining the mechanical properties of red blood cells (RBC). RBC are subjected to various forces that induce deformation during blood microcirculation. Such forces also regulate membrane tension, leading to Piezo1 channel activation, which is functionally linked to RBC dehydration through calcium influx and subsequent activation of Gardos channels, ultimately resulting in variations in RBC volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!