Background: Graph-based analysis of fMRI data has recently emerged as a promising approach to study brain networks. Based on the assessment of synchronous fMRI activity at separate brain sites, functional connectivity graphs are constructed and analyzed using graph-theoretical concepts. Most previous studies investigated region-level graphs, which are computationally inexpensive, but bring along the problem of choosing sensible regions and involve blurring of more detailed information. In contrast, voxel-level graphs provide the finest granularity attainable from the data, enabling analyses at superior spatial resolution. They are, however, associated with considerable computational demands, which can render high-resolution analyses infeasible. In response, many existing studies investigating functional connectivity at the voxel-level reduced the computational burden by sacrificing spatial resolution.
Methods: Here, a novel, time-efficient method for graph construction is presented that retains the original spatial resolution. Performance gains are instead achieved through data reduction in the temporal domain based on dichotomization of voxel time series combined with tetrachoric correlation estimation and efficient implementation.
Results: By comparison with graph construction based on Pearson's r, the technique used by the majority of previous studies, we find that the novel approach produces highly similar results an order of magnitude faster.
Conclusions: Its demonstrated performance makes the proposed approach a sensible and efficient alternative to customary practice. An open source software package containing the created programs is freely available for download.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081498 | PMC |
http://dx.doi.org/10.1186/1471-2202-15-78 | DOI Listing |
Vaccines (Basel)
November 2024
Department of Biological Sciences, Kean University, Union, NJ 07083, USA.
Immunosenescence, a systematic reduction in the immune system connected with age, profoundly affects the health and well-being of elderly individuals. This review outlines the hallmark features of immunosenescence, including thymic involution, inflammaging, cellular metabolic adaptations, and hematopoietic changes, and their impact on immune cells such as macrophages, neutrophils, T cells, dendritic cells, B cells, and natural killer (NK) cells. Thymic involution impairs the immune system's capacity to react to novel antigens by reducing thymopoiesis and shifting toward memory T cells.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CARISSMA Institute of Electric, Connected, and Secure Mobility (C-ECOS), Technische Hochschule Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany.
The perception of the vehicle's environment is crucial for automated vehicles. Therefore, environmental sensors' reliability and correct functioning are becoming increasingly important. Current vehicle inspections and self-diagnostics must be adapted to ensure the correct functioning of environmental sensors throughout the vehicle's lifetime.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Mechanical and Electrical Engineering, Changchun University of Science and Technology, Changchun 130022, China.
In industrial applications, robotic arm grasp detection tasks frequently suffer from inadequate accuracy and success rates, which result in reduced operational efficiency. Although existing methods have achieved some success, limitations remain in terms of detection accuracy, real-time performance, and generalization ability. To address these challenges, this paper proposes an enhanced grasp detection model, G-RCenterNet, based on the CenterNet framework.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland.
The precise localization of epileptic foci with the help of EEG or iEEG signals is still a clinical challenge with current methodology, especially if the foci are not close to individual electrodes. On the research side, dipole reconstruction for focus localization is a topic of recent and current developments. Relatively low numbers of recording electrodes cause ill-posed and ill-conditioned problems in the inversion of lead-field matrices to calculate the focus location.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore 453552, India.
The widespread reliance on paper-based currency poses significant drawbacks, such as counterfeiting, lack of transparency, and environmental impacts. While Central Bank Digital Currencies (CBDCs) address many of these issues, their dependence on continuous internet connectivity limits their usability in scenarios with poor or no network access. To overcome such limitations, this paper introduces ElasticPay, a novel Peer-to-Peer (P2P) Offline Digital Payment System that leverages advanced hardware security measures realised through Trusted Platform Modules (TPMs), Trusted Execution Environments (TEEs), and Secure Elements (SEs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!