Periodontitis is a polymicrobial chronic inflammatory disease of tooth-supporting tissues with bacterial etiology affecting all age groups, becoming chronic in a subgroup of older individuals. Periodontal pathogens Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola are implicated in the development of a number of inflammatory pathologies at remote organ sites, including Alzheimer's disease (AD). The initial inflammatory hypothesis proposed that AD hallmark proteins were the main contributors of central nervous system (CNS) inflammation. This hypothesis is expanding to include the role of infections, lifestyle, and genetic and environmental factors in the pathogenesis of AD. Periodontal disease (PD) typifies a condition that encompasses all of the above factors including pathogenic bacteria. These bacteria not only are the source of low-grade, chronic infection and inflammation that follow daily episodes of bacteremia arising from everyday tasks such as brushing, flossing teeth, chewing food, and during dental procedures, but they also disseminate into the brain from closely related anatomical pathways. The long-term effect of inflammatory mediators, pathogens, and/or their virulence factors, reaching the brain systemically or otherwise would, over time, prime the brain's own microglia in individuals who have inherent susceptibility traits. Such susceptibilities contribute to inadequate neutralization of invading agents, upon reaching the brain. This has the capacity to create a vicious cycle of sustained local inflammatory milieu resulting in the loss of cytoarchitectural integrity and vital neurons with subsequent loss of function (deterioration in memory). The possible pathways between PD and AD development are considered here, as well as environmental factors that may modulate/exacerbate AD symptoms.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-140387DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
environmental factors
8
reaching brain
8
factors
5
inflammatory
5
oral inflammation
4
inflammation tooth
4
tooth loss
4
loss risk
4
risk factors
4

Similar Publications

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

Dementia refers to an umbrella phenotype of many different underlying pathologies with Alzheimer's disease (AD) being the most common type. Neuropathological examination remains the gold standard for accurate AD diagnosis, however, most that we know about AD genetics is based on Genome-Wide Association Studies (GWAS) of clinically defined AD. Such studies have identified multiple AD susceptibility variants with a significant portion of the heritability unexplained and highlighting the phenotypic and genetic heterogeneity of the clinically defined entity.

View Article and Find Full Text PDF

Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau.

View Article and Find Full Text PDF

Background: Certain peripheral proteins are believed to be involved in the development of Alzheimer's disease (AD), but the roles of other new protein biomarkers are still unclear. Current treatments aim to manage symptoms, but they are not effective in stopping the progression of the disease. New drug targets are needed to prevent Alzheimer's disease.

View Article and Find Full Text PDF

The Trail of axonal protein Synthesis: Origins and current functional Landscapes.

Neuroscience

January 2025

Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay. Electronic address:

Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!