In vitro pharmaceutical characterization and statistical optimization of a novel topically applied instantly-soluble solid eye drop matrix.

Pharm Dev Technol

a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, Faculty of Health Sciences , School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg , Parktown, South Africa and.

Published: November 2015

Ocular diseases of the anterior segment of the eye are increasing and the development of novel drug delivery systems for improved treatment is necessary. The aim of this study was therefore to design and evaluate an instantly-soluble solid eye drop (ISED) for topical ophthalmic drug delivery of the model drug timolol maleate. The porous nature of the lyophilized ISED resulted in rapid fluid ingression, immediate hydration, and dissolution of the ocular matrix. The ISED was lyophilized employing hydroxypropylcellulose and pluronic® F68 as the matrix forming polymers. Polyacrylic acid sodium enhanced the solubility of the ISED, di-glycine, an anti-collapsing agent, while maltodextrin improved the matrix resilience. A statistical design was employed for optimizing the texture, disintegration, and the mean dissolution time (MDT) of the ISED. Results revealed that a robust rapidly disintegrating ISED was produced with the fastest disintegration time recorded at 0.20 s and drug release between 79 and 96%. In addition, improved corneal drug permeation was observed compared to pure timolol dispersion. The maltodextrin concentration significantly affected the ISED matrix resilience (p = 0.007) and pluronic F68 had a greater impact on disintegration time (p = 0.000) and MDT (p = 0.000). The ISED formulation may be a promising alternative to the use of liquid eye drops for topical ophthalmic drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10837450.2014.930488DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
instantly-soluble solid
8
solid eye
8
eye drop
8
ised
8
topical ophthalmic
8
ophthalmic drug
8
matrix resilience
8
disintegration time
8
drug
6

Similar Publications

This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.

View Article and Find Full Text PDF

Purpose: To describe the safety and assess the feasibility of using intracameral cefuroxime sodium (Aprokam®) during congenital cataract surgery as a preventive measure for endophthalmitis.

Design: Monocentric, prospective, observational pilot study.

Setting: San Giuseppe Hospital, University of Milan, Milan, Italy.

View Article and Find Full Text PDF

Quantifying Pulmonary Microvascular Density in Mice Across Lobules.

J Vis Exp

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University;

The abnormal alternation of pulmonary angiogenesis is related to lung microvascular dysfunction and is deeply linked to vascular wall integrity, blood flow regulation, and gas exchange. In murine models, lung lobes exhibit significant differences in size, shape, location, and vascularization, yet existing methods lack consideration for these variations when quantifying microvascular density. This limitation hinders the comprehensive study of lung microvascular dysfunction and the potential remodeling of microvasculature circulation across different lobules.

View Article and Find Full Text PDF

Chirality of sub-nanometer nanowires/nanobelts.

Nanoscale

January 2025

School of Chemistry and Chemical Engineering, Beijing Institution of Technology (BIT), Beijing 100081, P. R. China.

Chirality is a widespread phenomenon in the fields of nature and chemicals, endowing compounds with distinctive chemical and biological characteristics. The conventional synthesis of chiral nanomaterials relies on the introduction of chiral ligands or additives and environmental factors such as solvents and mechanical forces. Sub-nanometer nanowires (SNWs) and sub-nanometer nanobelts (SNBs) are one-dimensional nanomaterials with high anisotropy, nearly 100% atomic exposure ratio and some other distinctive characteristics.

View Article and Find Full Text PDF

Considerable research has focused on advanced wound dressing technology over the past decade. The increasing emphasis on health and medical treatment is crucial to the modern healthcare system. Consequently, high-quality wound dressings with advanced standards are essential for superior medical care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!